5,818 research outputs found

    Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes

    Full text link
    In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spatial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte

    The effects of spatial resolution on Integral Field Spectrograph surveys at different redshifts. The CALIFA perspective

    Get PDF
    Over the past decade, 3D optical spectroscopy has become the preferred tool for understanding the properties of galaxies and is now increasingly used to carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass, ATLAS3D, PINGS and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS, GLACE, and IMAGES have targeted the most luminous galaxies to study mainly their kinematic properties. The on-going CALIFA survey (z0.02z\sim0.02) is the first of a series of upcoming Integral Field Spectroscopy (IFS) surveys with large samples representative of the entire population of galaxies. Others include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at higher redshift. Given the importance of spatial scales in IFS surveys, the study of the effects of spatial resolution on the recovered parameters becomes important. We explore the capability of the CALIFA survey and a hypothetical higher redshift survey to reproduce the properties of a sample of objects observed with better spatial resolution at lower redshift. Using a sample of PINGS galaxies, we simulate observations at different redshifts. We then study the behaviour of different parameters as the spatial resolution degrades with increasing redshift.Comment: 20 pages, 16 figures. Accepted for publication in A&

    Ionized gas kinematics of galaxies in the CALIFA survey I: Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems

    Full text link
    This work provides an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of this survey for including kinematical criteria for specific studies. From the first 200 galaxies observed by CALIFA, we present the 2D kinematic view of the 177 galaxies satisfying a gas detection threshold. After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component. The main kinematic parameters were directly derived from the radial velocities with no assumptions on the internal motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [OIII] profiles. Most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. 35% of the objects present evidence of a displacement between the photometric and kinematic centers larger than the original spaxel radii. Only 17% of the objects in the sample exhibit kinematic lopsidedness when comparing receding and approaching sides of the velocity fields, but most of them are interacting galaxies exhibiting nuclear activity. Early-type galaxies in the sample present clear photometric-kinematic misaligments. There is evidence of asymmetries in the emission line profiles suggesting the presence of kinematically distinct gaseous components at different distances from the nucleus. This work constitutes the first determination of the ionized gas kinematics of the galaxies observed in the CALIFA survey. The derived velocity fields, the reported kinematic peculiarities and the identification of the presence of several gaseous components might be used as additional criteria for selecting galaxies for specific studies.Comment: 38 pages, 16 figures, 4 tables. Paper accepted for publication in A&

    Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies

    Get PDF
    PP is supported by Ciencia 2008 Contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC), and J.M.G. by a Post-Doctoral grant, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). P.P. and J.M.G. acknowledge support by the Fundação para a Ciência e a Tecnologia (FCT) under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). I.M. acknowledges support from Spanish grant AYA2010-15169 and the Junta de Andalucia through TIC-114 and the Excellence Project P08-TIC-03531. J.F.-B. from the Ramón y Cajal Program, grants AYA2010-21322-C03-02 and AIB-2010-DE-00227 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement n° 289313.We use deep integral field spectroscopy data from the CALIFA survey to study the warm interstellar medium (wim) over the entire extent and optical spectral range of 32 nearby early-type galaxies (ETGs). We find that faint nebular emission is extended in all cases, and its surface brightness decreases roughly as ∝ r−α. The large standard deviation in the derived α (1.09 ± 0.67) argues against a universal power-law index for the radial drop-off of nebular emission in ETGs. Judging from the properties of their extranuclear component, our sample ETGs span a broad, continuous sequence with respect to their α, Hα equivalent width (EW) and Lyman continuum (Lyc) photon leakage fraction (plf). We propose a tentative subdivision into two groups: Type i ETGs are characterized by rather steep Hα profiles (α ≃ 1.4), comparatively large (≳1 Å), nearly radially constant EWs, and plf ≃ 0. Photoionization by post-AGB stars appears to be the main driver of extended nebular emission in these systems, with nonthermal sources being potentially important only in their nuclei. Typical properties of type ii ETGs are shallower Hα profiles (α ≃ 0.8), very low (≲0.5 Å) EWs with positive radial gradients, and a mean plf ≳ 0.7, rising to ≳0.9 in their centers. Such properties point to a low, and inwardly decreasing wim density and/or volume filling factor. We argue that, because of extensive Lyc photon leakage, emission-line luminosities and EWs are reduced in type ii ETG nuclei by at least one order of magnitude. Consequently, the line weakness of these ETGs is by itself no compelling evidence for their containing merely “weak” (sub-Eddington accreting) active galactic nuclei (AGN). In fact, Lyc photon escape, which has heretofore not been considered, may constitute a key element in understanding why many ETGs with prominent signatures of AGN activity in radio continuum and/or X-ray wavelengths show only faint emission lines and weak signatures of AGN activity in their optical spectra. The Lyc photon escape, in conjunction with dilution of nuclear EWs by line-of-sight integration through a triaxial stellar host, can systematically impede detection of AGN in gas-poor galaxy spheroids through optical emission-line spectroscopy, thereby leading to an observational bias. We further find that type i&ii ETGs differ little (≲0.4 dex) in their mean BPT line ratios, which in both cases are characteristic of LINERs and are, within their uncertainties, almost radius-independent. This potentially hints at a degeneracy of the projected, luminosity-weighted BPT ratios in the LINER regime, for the specific 3D properties of the wim and the ionizing photon field in ETGs.Peer reviewe

    Very light CP-odd scalar in the Two-Higgs-Doublet Model

    Full text link
    We show that a general two-Higgs-doublet model (THDM) with a very light CP-odd scalar (A) can be compatible with the rho parameter, Br(b --> s\gamma), R_b, A_b, (g-2) of muon, Br(Upsilon --> A gamma), and the direct search via the Yukawa process at LEP. For its mass around 0.2 GeV, the muon (g-2) and Br(Upsilon --> A \gamma) data require tan(beta) to be about 1. Consequently, A can behave like a fermiophobic CP-odd scalar and predominantly decay into a photon pair ("gamma gamma"), which registers in detectors of high energy collider experiments as a single photon signature when the momentum of A is large. We compute the partial decay width of Z --> A A A and the production rate of f \bar{f} --> Z A A --> Z +"gamma gamma", f^' {\bar f} --> W^{\pm} A A --> W^\pm + "gamma gamma" and f \bar f --> H^+ H^- --> W^+ W^- A A --> W^+ W^- + "gamma gamma" at high energy colliders such as LEP, Tevatron, LHC, and future Linear Colliders. Other production mechanisms of a light A, such as gg --> h --> AA --> "gamma gamma", are also discussed.Comment: Some improvementes, references updated, 3 new figures, one new appendix, abstract and conclusions unchaged. Version to appear in Physical Review

    The decay Z -> neutrino antineutrino photon in the Standard Model

    Full text link
    A complete study of the one-loop induced decay Z -> neutrino antineutrino photon is presented within the framework of the Standard Model. The advantages of using a nonlinear gauge are stressed. We have found that the main contributions come from the electric dipole and the magnetic dipole transitions of the Z gauge boson and the neutrino, respectively. We obtain a branching ratio B=7.16E-10, which is about four orders of magnitude smaller than the bound recentely obtained by the L3 collaboration and thus it leaves open a window to search for new physics effects in single-photon decays of the Z boson.Comment: REVTEX,15 pp, 5 eps figures, Approved for publication in Physical Review

    CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

    Get PDF
    We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of 600\sim600 galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of \sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {\AA}, using two overlapping setups (V500 and V1200), with different resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and Astrophysic

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore