8,746 research outputs found

    Identifying wave packet fractional revivals by means of information entropy

    Full text link
    Wave packet fractional revivals is a relevant feature in the long time scale evolution of a wide range of physical systems, including atoms, molecules and nonlinear systems. We show that the sum of information entropies in both position and momentum conjugate spaces is an indicator of fractional revivals by analyzing three different model systems: (i)(i) the infinite square well, (ii)(ii) a particle bouncing vertically against a wall in a gravitational field, and (iii)(iii) the vibrational dynamics of hydrogen iodide molecules. This description in terms of information entropies complements the usual one in terms of the autocorrelation function

    The modular method: Milkfish pond culture

    Get PDF
    The modular method of milkfish culture (Chanos chanos) described in the manual is an improvement over the traditional extensive method. The manual is intended for the use of fish farmers and aquaculturists, extensionists, and students of aquaculture not only in the Philippines, but also in other milkfish-producing countries in Southeast Asia and the world. It covers the following: Interesting facts about milkfish -- biological characteristics, artificial breeding of milkfish; Design and operation of modular pond system -- pond preparation, stocking in the nursery or transition ponds, stocking in the rearing ponds, care of stock, pond utilization and production schedule, harvest and post-harvest; and, Economics and costing

    Accurate Genomic Prediction Of Human Height

    Full text link
    We construct genomic predictors for heritable and extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). Replication tests show that these predictors capture, respectively, \sim40, 20, and 9 percent of total variance for the three traits. For example, predicted heights correlate \sim0.65 with actual height; actual heights of most individuals in validation samples are within a few cm of the prediction. The variance captured for height is comparable to the estimated SNP heritability from GCTA (GREML) analysis, and seems to be close to its asymptotic value (i.e., as sample size goes to infinity), suggesting that we have captured most of the heritability for the SNPs used. Thus, our results resolve the common SNP portion of the "missing heritability" problem -- i.e., the gap between prediction R-squared and SNP heritability. The \sim20k activated SNPs in our height predictor reveal the genetic architecture of human height, at least for common SNPs. Our primary dataset is the UK Biobank cohort, comprised of almost 500k individual genotypes with multiple phenotypes. We also use other datasets and SNPs found in earlier GWAS for out-of-sample validation of our results.Comment: 17 pages, 10 figure

    Mudcrab, Scylla spp, production in brackishwater ponds

    Get PDF
    This manual covers the specifics of grow-out operation — site selection, pond specification, pond preparation, source of juveniles, transport and stocking, care of pond and stock, feeds and feeding, harvest, postharvest. Also includes costs-and-benefits analysis and a list of useful references.Mudcrab (Scylla spp) production in brackishwater ponds is now gaining popularity, especially in communities that need to supplement their income. The manual covers the following: Distribution; Grow-out operation in ponds - site selection, pond specification, pond preparation, source of juveniles, transport and stocking of juveniles, care of pond and stock, feeds and feeding, harvest, post-harvest; Production and profits; Cost and analysis. It is hoped that the manual will be of use to fishfarmers and aquaculturists, extensionists, and students of aquaculture not only in the Philippines but also in other mudcrab producing countries in Southeast Asia

    The Anisotropic Bak-Sneppen model

    Get PDF
    The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law `tail' which passes through the system for any non-zero anisotropy but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally, we identify the maximally anisotropic model which is more tractable and yet more generally applicable than the isotropic system

    Finite size effects in nonequilibrium wetting

    Full text link
    Models with a nonequilibrium wetting transition display a transition also in finite systems. This is different from nonequilibrium phase transitions into an absorbing state, where the stationary state is the absorbing one for any value of the control parameter in a finite system. In this paper, we study what kind of transition takes place in finite systems of nonequilibrium wetting models. By solving exactly a microscopic model with three and four sites and performing numerical simulations we show that the phase transition taking place in a finite system is characterized by the average interface height performing a random walk at criticality and does not discriminate between the bounded-KPZ classes and the bounded-EW class. We also study the finite size scaling of the bKPZ universality classes, showing that it presents peculiar features in comparison with other universality classes of nonequilibrium phase transitions.Comment: 14 pages, 6figures, major change

    An ultrahigh-speed digitizer for the Harvard College Observatory astronomical plates

    Full text link
    A machine capable of digitizing two 8 inch by 10 inch (203 mm by 254 mm) glass astrophotographic plates or a single 14 inch by 17 inch (356 mm by 432 mm) plate at a resolution of 11 microns per pixel or 2309 dots per inch (dpi) in 92 seconds is described. The purpose of the machine is to digitize the \~500,000 plate collection of the Harvard College Observatory in a five year time frame. The digitization must meet the requirements for scientific work in astrometry, photometry, and archival preservation of the plates. This paper describes the requirements for and the design of the subsystems of the machine that was developed specifically for this task.Comment: 12 pages, 9 figures, 1 table; presented at SPIE (July, 2006) and published in Proceeding
    corecore