2,158 research outputs found
Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium
The mirror relative motion of a suspended Fabry-Perot cavity is studied in
the frequency range 3-10 Hz. The experimental measurements presented in this
paper, have been performed at the Low Frequency Facility, a high finesse
optical cavity 1 cm long suspended to a mechanical seismic isolation system
identical to that one used in the VIRGO experiment. The measured relative
displacement power spectrum is compatible with a system at thermal equilibrium
within its environmental. In the frequency region above 3 Hz, where seismic
noise contamination is negligible, the measurement distribution is stationary
and Gaussian, as expected for a system at thermal equilibrium. Through a simple
mechanical model it is shown that: applying the fluctuation dissipation theorem
the measured power spectrum is reproduced below 90 Hz and noise induced by
external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte
On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors
In this paper we address both to the problem of identifying the noise Power
Spectral Density of interferometric detectors by parametric techniques and to
the problem of the whitening procedure of the sequence of data. We will
concentrate the study on a Power Spectral Density like the one of the
Italian-French detector VIRGO and we show that with a reasonable finite number
of parameters we succeed in modeling a spectrum like the theoretical one of
VIRGO, reproducing all its features. We propose also the use of adaptive
techniques to identify and to whiten on line the data of interferometric
detectors. We analyze the behavior of the adaptive techniques in the field of
stochastic gradient and in the
Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on
Classical and Quantum Gravit
Brain morphology and immunohistochemical localization of the gonadotropin-releasing hormone in the bluefin tuna, <i>Thunnus thynnus</i>
The present study was focused on the morphology of the
diencephalic nuclei (likely involved in reproductive functions)
as well as on the distribution of GnRH (gonadotropin-releasing
hormone) in the rhinencephalon, telencephalon and the
diencephalon of the brain of bluefin tuna (Thunnus thynnus)
by means of immunohistochemistry. Bluefin tuna has an
encephalization quotient (QE) similar to that of other large
pelagic fish. Its brain exhibits well-developed optic tecta and
corpus cerebelli. The diencephalic neuron cell bodies
involved in reproductive functions are grouped in two main
nuclei: the nucleus preopticus-periventricularis and the
nucleus lateralis tuberis. The nucleus preopticus-periventricularis
consists of the nucleus periventricularis and the nucleus
preopticus consisting of a few sparse multipolar neurons
in the rostral part and numerous cells closely packed and
arranged in several layers in its aboral part. The nucleus lateralis
tuberis is located in the ventral-lateral area of the
diencephalon and is made up of a number of large multipolar
neurones.
Four different polyclonal primary antibodies against salmon
(s)GnRH, chicken (c)GnRH-II (cGnRH-II 675, cGnRH-II 6)
and sea bream (sb)GnRH were employed in the immunohistochemical
experiments. No immunoreactive structures were
found with anti sbGnRH serum. sGnRH and cGnRH-II antisera
revealed immunoreactivity in the perikarya of the olfactory
bulbs, preopticus-periventricular nucleus, oculomotor
nucleus and midbrain tegmentum. The nucleus lateralis
tuberis showed immunostaining only with anti-sGnRH serum.
Nerve fibres immunoreactive to cGnRH and sGnRH sera were
found in the olfactory bulbs, olfactory nerve and neurohypophysis.
The significance of the distribution of the GnRHimmunoreactive
neuronal structures is discussed
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field
We consider the resummation of the perturbation series describing the energy
displacement of a hydrogenic bound state in an electric field (known as the
Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal
power series in the electric field strength. The perturbation series exhibits a
rich singularity structure in the Borel plane. Resummation methods are
presented which appear to lead to consistent results even in problematic cases
where isolated singularities or branch cuts are present on the positive and
negative real axis in the Borel plane. Two resummation prescriptions are
compared: (i) a variant of the Borel-Pade resummation method, with an
additional improvement due to utilization of the leading renormalon poles (for
a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317,
p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with
an analytic continuation by conformal mapping, and Pade approximations in the
conformal variable. The singularity structure in the case of the LoSurdo-Stark
effect in the complex Borel plane is shown to be similar to (divergent)
perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results
enhanced; one section and one appendix added and some minor changes and
additions; to appear in phys. rev.
- …
