19,072 research outputs found
Convolutional-Code-Specific CRC Code Design
Cyclic redundancy check (CRC) codes check if a codeword is correctly
received. This paper presents an algorithm to design CRC codes that are
optimized for the code-specific error behavior of a specified feedforward
convolutional code. The algorithm utilizes two distinct approaches to computing
undetected error probability of a CRC code used with a specific convolutional
code. The first approach enumerates the error patterns of the convolutional
code and tests if each of them is detectable. The second approach reduces
complexity significantly by exploiting the equivalence of the undetected error
probability to the frame error rate of an equivalent catastrophic convolutional
code. The error events of the equivalent convolutional code are exactly the
undetectable errors for the original concatenation of CRC and convolutional
codes. This simplifies the computation because error patterns do not need to be
individually checked for detectability. As an example, we optimize CRC codes
for a commonly used 64-state convolutional code for information length k=1024
demonstrating significant reduction in undetected error probability compared to
the existing CRC codes with the same degrees. For a fixed target undetected
error probability, the optimized CRC codes typically require 2 fewer bits.Comment: 12 pages, 8 figures, journal pape
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
PDMS/PVA composite ferroelectret for improved energy harvesting performance
This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours
Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region.
We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge
Prevention and control of Zika fever as a mosquito-borne and sexually transmitted disease
The ongoing Zika virus (ZIKV) epidemic poses a major global public health
emergency. It is known that ZIKV is spread by \textit{Aedes} mosquitoes, recent
studies show that ZIKV can also be transmitted via sexual contact and cases of
sexually transmitted ZIKV have been confirmed in the U.S., France, and Italy.
How sexual transmission affects the spread and control of ZIKV infection is not
well-understood. We presented a mathematical model to investigate the impact of
mosquito-borne and sexual transmission on spread and control of ZIKV and used
the model to fit the ZIKV data in Brazil, Colombia, and El Salvador. Based on
the estimated parameter values, we calculated the median and confidence
interval of the basic reproduction number R0=2.055 (95% CI: 0.523-6.300), in
which the distribution of the percentage of contribution by sexual transmission
is 3.044 (95% CI: 0.123-45.73). Our study indicates that R0 is most sensitive
to the biting rate and mortality rate of mosquitoes while sexual transmission
increases the risk of infection and epidemic size and prolongs the outbreak. In
order to prevent and control the transmission of ZIKV, it must be treated as
not only a mosquito-borne disease but also a sexually transmitted disease
- …
