552 research outputs found

    Non-equilibrium structural phase transitions of the vortex lattice in MgB2

    Full text link
    We have studied non-equilibrium phase transitions in the vortex lattice in superconducting MgB2, where metastable states are observed in connection with an intrinsically continuous rotation transition. Using small-angle neutron scattering and a stop-motion technique, we investigated the manner in which the metastable vortex lattice returns to the equilibrium state under the influence of an ac magnetic field. This shows a qualitative difference between the supercooled case which undergoes a discontinuous transition, and the superheated case where the transition to the equilibrium state is continuous. In both cases the transition may be described by an an activated process, with an activation barrier that increases as the metastable state is suppressed, as previously reported for the supercooled vortex lattice [E. R. Louden et al., Phys. Rev. B 99, 060502(R) (2019)]. Separate preparations of superheated metastable vortex lattices with different domain populations showed an identical transition towards the equilibrium state. This provides further evidence that the vortex lattice metastability, and the kinetics associated with the transition to the equilibrium state, is governed by nucleation and growth of domains and the associated domain boundaries.Comment: 27 pages, 10 figures. arXiv admin note: text overlap with arXiv:1812.0597

    Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice

    Full text link
    Using small-angle neutron scattering, we investigated the behavior of a metastable vortex lattice state in MgB2 as it is driven towards equilibrium by an AC magnetic field. This shows an activated behavior, where the AC field amplitude and cycle count are equivalent to, respectively, an effective "temperature" and "time". The activation barrier increases as the metastable state is suppressed, corresponding to an aging of the vortex lattice. Furthermore, we find a cross-over from a partial to a complete suppression of metastable domains depending on the AC field amplitude, which may empirically be described by a single free parameter. This represents a novel kind of collective vortex behavior, most likely governed by the nucleation and growth of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia

    High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain

    Full text link
    The irradiation of close-in planets by their star influences their evolution and might be responsible for a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through UV transit observations. We used the Hubble Space Telescope to observe the transit in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These observations reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last 2 epochs, we detected a larger flux in the C III, Si III, and Si IV lines after the planet passed the approaching quadrature, followed by a flux decrease in the Si IV doublet. In the second epoch these variations are contemporaneous with flux decreases in the Si II and C II doublet. All epochs show flux decreases in the N V doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the transit. These 3 points make it unlikely that the variations are purely stellar, yet we show that the occulting material is also unlikely to originate from the planet. We tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the visits. Additional variations are detected in the C II doublet in the first epoch and in the O I triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&

    Precision study of 6p 2Pj - 8s 2S1/2 relative transition matrix elements in atomic Cs

    Full text link
    A combined experimental and theoretical study of transition matrix elements of the 6p 2Pj - 8s 2S1/2 transition in atomic Cs is reported. Measurements of the polarization-dependent two-photon excitation spectrum associated with the transition were made in an approximately 200 cm-1 range on the low frequency side of the 6s 2S1/2 - 6p 2P3/2 resonance. The measurements depend parametrically on the relative transition matrix elements, but also are sensitive to far-off-resonance 6s 2S1/2 - np 2Pj - 8s 2S1/2 transitions. In the past, this dependence has yielded a generalized sum rule, the value of which is dependent on sums of relative two-photon transition matrix elements. In the present case, best available determinations from other experiments are combined with theoretical matrix elements to extract the ratio of transition matrix elements for the 6p 2Pj - 8s 2S1/2 (j = 1/2,3/2) transition. The resulting experimental value of 1.423(2) is in excellent agreement with the theoretical value, calculated using a relativistic all-order method, of 1.425(2)

    Creating ORIGEN Models

    Get PDF
    The purpose of this study was to develop a methodology for creating problem dependent cross section libraries for ORIGEN (Oak Ridge Isotope Generation and Depletion Code). The Air Force Technical Applications Center (AFTAC) has a requirement to classify spent nuclear fuel. The ORIGEN codes provide generic models of commercial nuclear reactor designs that are not adequate for the detailed analysis required by AFTAC. After comparing the methods that ORIGEN2 an ORIGEN-S use to develop burnup dependent cross section libraries, the research focused on developing a methodology for creating new ORIGEN-S models. Models of the Ohio State University Research Reactor were created using the Coupled I-D Shielding Analysis (SAS2H) module of the Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation (SCALE4.3). Model design parameters were examined by varying the fuel loading, composition temperatures, larger unit cells, and power histories. The results indicate that the SAS2H sequence has the potential to fulfill the technical requirements of the sponsor

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference

    MOVES – I. The evolving magnetic field of the planet-hosting star HD189733

    Get PDF
    HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) programme, we present a 2-yr monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely 2013 June–July, 2013 August, 2013 September, 2014 September and 2015 July, using Zeeman–Doppler imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally dominated field. Using previously published data of Moutou et al. and Fares et al., we are able to study the evolution of the magnetic field over 9 yr, one of the longest monitoring campaigns for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the potential field source surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multiwavelength observations to characterize exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multiwavelength observations.Publisher PDFPeer reviewe
    corecore