196 research outputs found
NiO: Correlated Bandstructure of a Charge-Transfer Insulator
The bandstructure of the prototypical charge-transfer insulator NiO is
computed by using a combination of an {\it ab initio} bandstructure method and
the dynamical mean-field theory with a quantum Monte-Carlo impurity solver.
Employing a Hamiltonian which includes both Ni-d and O-p orbitals we find
excellent agreement with the energy bands determined from angle-resolved
photoemission spectroscopy. This solves a long-standing problem in solid state
theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly
k-dependent orbital character discussed previously in the context of low-energy
model theories.Comment: 4 pages, 3 figur
Correlation effects in Ni 3d states of LaNiPO
The electronic structure of the new superconducting material LaNiPO
experimentally probed by soft X-ray spectroscopy and theoretically calculated
by the combination of local density approximation with Dynamical Mean-Field
Theory (LDA+DMFT) are compared herein. We have measured the Ni L2,3 X-ray
emission (XES) and absorption (XAS) spectra which probe the occupied and
unoccupied the Ni 3d states, respectively. In LaNiPO, the Ni 3d states are
strongly renormalized by dynamical correlations and shifted about 1.5 eV lower
in the valence band than the corresponding Fe 3d states in LaFeAsO. We further
obtain a lower Hubbard band at -9 eV below the Fermi level in LaNiPO which
bears striking resemblance to the lower Hubbard band in the correlated oxide
NiO, while no such band is observed in LaFeAsO. These results are also
supported by the intensity ratio between the transition metal L2 and L3 bands
measured experimentally to be higher in LaNiPO than in LaFeAsO, indicating the
presence of the stronger electron correlations in the Ni 3d states in LaNiPO in
comparison with the Fe 3d states in LaFeAsO. These findings are in accordance
with resonantly excited transition metal L3 X-ray emission spectra which probe
occupied metal 3d-states and show the appearance of the lower Hubbard band in
LaNiPO and NiO and its absence in LaFeAsO.Comment: 6 pages, 5 figure
Orbital densities functional
Local density approximation (LDA) to the density functional theory (DFT) has
continuous derivative of total energy as a number of electrons function and
continuous exchange-correlation potential, while in exact DFT both should be
discontinuous as number of electrons goes through an integer value. We propose
orbital densities functional (ODF) (with orbitals defined as Wannier functions)
that by construction obeys this discontinuity condition. By its variation
one-electron equations are obtained with potential in the form of projection
operator. The operator increases a separation between occupied and empty bands
thus curing LDA deficiency of energy gap value systematic underestimation.
Orbital densities functional minimization gives ground state orbital and total
electron densities. The ODF expression for the energy of orbital densities
fluctuations around the ground state values defines ODF fluctuation Hamiltonian
that allows to treat correlation effects. Dynamical mean-field theory (DMFT)
was used to solve this Hamiltonian with quantum Monte Carlo (QMC) method for
effective impurity problem. We have applied ODF method to the problem of
metal-insulator transition in lanthanum trihydride LaH_{3-x}. In LDA
calculations ground state of this material is metallic for all values of
hydrogen nonstoichiometry x while experimentally the system is insulating for x
< 0.3. ODF method gave paramagnetic insulator solution for LaH_3 and LaH_{2.75}
but metallic state for LaH_{2.5}.Comment: 35 pages, 5 figure
Electronic structure, magnetic and optical properties of intermetallic compounds R2Fe17 (R=Pr,Gd)
In this paper we report comprehensive experimental and theoretical
investigation of magnetic and electronic properties of the intermetallic
compounds Pr2Fe17 and Gd2Fe17. For the first time electronic structure of these
two systems was probed by optical measurements in the spectral range of 0.22-15
micrometers. On top of that charge carriers parameters (plasma frequency and
relaxation frequency) and optical conductivity s(w) were determined.
Self-consistent spin-resolved bandstructure calculations within the
conventional LSDA+U method were performed. Theoretical interpetation of the
experimental s(w) dispersions indicates transitions between 3d and 4p states of
Fe ions to be the biggest ones. Qualitatively the line shape of the theoretical
optical conductivity coincides well with our experimental data. Calculated by
LSDA+U method magnetic moments per formula unit are found to be in good
agreement with observed experimental values of saturation magnetization.Comment: 16 pages, 5 figures, 1 tabl
Magnetic state of plutonium ion in metallic Pu and its compounds
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and
electronic structure have been investigated for plutonium in \delta and \alpha
phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For
metallic plutonium in both phases in agreement with experiment a nonmagnetic
ground state was found with Pu ions in f^6 configuration with zero values of
spin, orbital, and total moments. This result is determined by a strong
spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced
splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a
pseudogap between them, so that f^{5/2} subshell is already nearly completely
filled with six electrons before Coulomb correlation effects were taken into
account. The competition between spin-orbit coupling and exchange (Hund)
interaction (favoring magnetic ground state) in 5f shell is so delicately
balanced, that a small increase (less than 15%) of exchange interaction
parameter value from J_H=0.48eV obtained in constrain LDA calculation would
result in a magnetic ground state with nonzero spin and orbital moment values.
For Pu compounds investigated in the present work, predominantly f^6
configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and
PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic
moment values. Whereas pure jj coupling scheme was found to be valid for
metallic plutonium, intermediate coupling scheme is needed to describe 5f shell
in Pu compounds. The results of our calculations show that both spin-orbit
coupling and exchange interaction terms in the Hamiltonian must be treated in a
general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape
Composition-Induced Magnetic Transition in GdMn1-xTixSi Intermetallic Compounds for x = 0–1
Magnetic intermetallic compounds based on rare earth elements and 3d transition metals are widely investigated due to the functionality of their physical properties and their variety of possible applications. In this work, we investigated the features of the electronic structure and magnetic properties of ternary intermetallic compounds based on gadolinium GdMn1-xTixSi, in the framework of the DFT + U method. Analysis of the densities of electronic states and magnetic moments of ions in Ti-doped GdMnSi showed a significant change in the magnetic properties depending on the contents of Mn and Ti. Together with the magnetic moment, an increase in the density of electronic states at the Fermi energy was found in almost all GdMn1-xTixSi compositions, which may indicate a significant change in the transport properties of intermetallic compounds. Together with the expected Curie temperatures above 300 K, the revealed changes in the magnetic characteristics and electronic structure make the GdMn1-xTixSi intermetallic system promising for use in microelectronic applications. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was supported by the Russian Science Foundation (project no. 18-72-10098) for the electronic structure calculations in Section 3.2. The results of Section 3.1 (antiferromagnetic ordering calculations) were obtained within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Electron” no. AAAA-A18-118020190098-5)
Some peculiarities of spin-lattice relaxation of impurity rare-earth ions in crystals, caused by the structure defects
The spin-lattice relaxation times for Nd3+ ions in yttrium-aluminum garnets (YAG) and for Yb3+ ions in CaF2 in the low-temperature range have been measured. For the first system the temperature dependence of the relaxation rate is determined to a great extent by the method of sample preparation. For samples grown by the method of the horizontally oriented crystallization the dependence is described as T1 -1 = ATn, n ≅ 4.7, which is an evidence of an influence of local structure disordering on the relaxation. The temperature dependence of the relaxation rate in CaF2:Yb is also "anomalous": T1 -1 = AT3.3. The results are compared with the previous data on the relaxation in similar systems, and with other cases of observation of "anomalous" temperature dependences. Different manifestations of the local crystal defects in spin-lattice relaxation are discussed. © Springer-Verlag 1998 Printed in Austria
On guarantee optimization under conditions of integral constraints on control actions and nonterminal quality index
A linear-convex problem of dynamical guarantee optimization under conditions of unknown disturbances and with positional quality index that estimates a set of deviations of the motion of the controlled system at given instants of time from given target points is considered. Control actions are bounded by both geometrical and integral constraints. Disturbance actions are only geometrically bounded. A procedure for approximate computing of the optimal guaranteed result and of the corresponding optimal closed-loop control law is elaborated. The method is based on recurrent constructions of upper convex hulls of auxiliary program functions. Results of numerical experiments on model examples are given. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved
Effect of Electron Correlations on the Electronic Structure and Magnetic Properties of the Full Heusler Alloy Mn2NiAl
In this theoretical study, we investigate the effect of electron correlations on the electronic structure and magnetic properties of the full Heusler alloy Mn (Formula presented.) NiAl in the framework of first-principles calculations. We investigate the electron correlation effect as employed within hybrid functional (HSE) and also within the DFT+U method with varied values of parameters between 0.9 and 6 eV. The XA-crystal structure was investigated with antiferromagnetic orderings of the magnetic moments of the manganese. It was found that with a growth of the Coulomb interaction parameter, the manganese ions magnetic moment increases, and it reaches the value of 4.15–4.46 (Formula presented.) per Mn. In addition, the total magnetic moment decreases because of the AFM ordering of the Mn ions and a small magnetic moment of Ni. The calculated total magnetic value agrees well with recent experiments demonstrating a low value of magnetization. This experimental value is most closely reproduced for the moderate values of the Coulomb parameter, also calculated in constrained LDA, while previous DFT studies substantially overestimated this value. It is also worth noticing that for all values of the Coulomb interaction parameter, this compound remains metallic in its electronic structure in agreement with transport measurements. © 2023 by the authors.Russian Academy of Sciences, РАН; Russian Science Foundation, RSF: 22-22-20109The research was supported by the Russian Science Foundation, project no. 22-22-20109 (https://rscf.ru/en/project/22-22-20109/, M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences)
Effect of Mo3+ ions on Nd3+ spin-lattice relaxation in Y3Al5O12
The content of Mo3+ ions in YAG:Nd garnet samples prepared by different technologies has been studied, and the spin-lattice relaxation rate of these ions at temperatures of 4-5 K measured. It is concluded is drawn that Mo3+ ions can play the part of rapidly relaxing centers mediating the Nd3+ spin-lattice relaxation at liquid-helium temperatures. This may account for a number of features in the spin-lattice relaxation of rare-earth ions in garnets, observed earlier at low temperatures. © 1998 American Institute of Physics
- …
