5,136 research outputs found
Built heritage in transition: a critique on Hong Kong’s conservation Movement and the Antiquities and Monuments Ordinance
published_or_final_versio
The Impact of Community Based Adventure Therapy on Stress and Coping Skills in Adults.
Stress and coping skills are among the most essential components of the mental health counseling field. The use of coping skills (e.g., meditation, physical activities, appropriate uses of leisure) has been identified as an effective strategy for stress management. Adventure therapy has emerged as a modality that can positively augment other therapeutic approaches by improving coping skills and assisting clients in managing stress. As with all therapies, a positive working alliance has been found to be important toward achieving clinical outcomes. This study explored how adventure therapy enhanced learned coping strategies for stress and improved therapeutic alliance. Outcomes from this exploratory research highlighted the potential of adventure therapy to decrease stress, increase coping skills, and build therapeutic rapport with the therapist
Primordial magnetic field and non-Gaussianity of the 1-year Wilkinson Microwave Anisotropy Probe (WMAP) data
Alfven turbulence caused by statistically isotropic and homogeneous
primordial magnetic field induces correlations in the cosmic microwave
background anisotropies. The correlations are specifically between spherical
harmonic modes a_{l-1,m} and a_{l+1,m}. In this paper we approach this issue
from phase analysis of the CMB maps derived from the WMAP data sets. Using
circular statistics and return phase mapping we examine phase correlation of
\Delta l=2 for the primordial non-Gaussianity caused by the Alfven turbulence
at the epoch of recombination. Our analyses show that such specific features
from the power-law Alfven turbulence do not contribute significantly in the
phases of the maps and could not be a source of primordial non-Gaussianity of
the CMB.Comment: 8 pages, 7 figures, ApJ accepted with minor changes and the
explanation on the whitened derived CMB map
Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data
We test the hypothesis that the temperature of the cosmic microwave
background is consistent with a Gaussian random field defined on the celestial
sphere, using de-biased internal linear combination (DILC) map produced from
the 3-year WMAP data. We test the phases for spherical harmonic modes with l <=
10 (which should be the cleanest) for their uniformity, randomness, and
correlation with those of the foreground templates. The phases themselves are
consistent with a uniform distribution, but not for l <= 5, and the differences
between phases are not consistent with uniformity. For l=3 and l=6, the phases
of the CMB maps cross-correlate with the foregrounds, suggestion the presence
of residual contamination in the DLC map even on these large scales. We also
use a one-dimensional Fourier representation to assemble a_lm into the \Delta
T_l(\phi) for each l mode, and test the positions of the resulting maxima and
minima for consistency with uniformity randomness on the unit circle. The
results show significant departures at the 0.5% level, with the one-dimensional
peaks being concentrated around \phi=180 degs. This strongly significant
alignment with the Galactic meridian, together with the cross-correlation of
DILC phases with the foreground maps, strongly suggests that even the lowest
spherical harmonic modes in the map are significantly contaminated with
foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more
in the Referenc
Expected Sensitivity to Galactic/Solar Axions and Bosonic Super-WIMPs based on the Axio-electric Effect in Liquid Xenon Dark Matter Detectors
We present systematic case studies to investigate the sensitivity of axion
searches by liquid xenon detectors, using the axio-electric effect (analogue of
the photoelectric effect) on xenon atoms. Liquid xenon is widely considered to
be one of the best target media for detection of WIMPs (Weakly Interacting
Massive Particles which may form the galactic dark matter) using nuclear
recoils. Since these detectors also provide an extremely low radioactivity
environment for electron recoils, very weakly-interacting low-mass particles (<
100 keV/c^2), such as the hypothetical axion, could be detected as well - in
this case using the axio-electric effect. Future ton-scale liquid Xe detectors
will be limited in sensitivity only by irreducible neutrino background
(pp-chain solar neutrino and the double beta decay of 136Xe) in the mass range
between 1 and 100 keV/c^2. Assuming one ton-year of exposure, galactic axions
(as non-relativistic dark matter) could be detected if the axio-electric
coupling g_Ae is greater than 10^-14 at 1 keV/c^2 (or $10^-13 at 100 keV/c^2).
Below a few keV/c^2, and independent of the mass, a solar axion search would be
sensitive to a coupling g_Ae ~ 10^-12. This limit will set a stringent upper
bound on axion mass for the DFSV and KSVZ models for the mass ranges m_A < 0.1
eV/c^2 and < 10 eV/c^2, respectively. Vector-boson dark matter could also be
detected for a coupling constant alpha'/alpha > 10^-33 (for mass 1 keV/c^2) or
> 10^-27 (for mass 100 keV/c^2).Comment: 17 pages, 10 figure
A Game of Attribute Decomposition for Software Architecture Design
Attribute-driven software architecture design aims to provide decision
support by taking into account the quality attributes of softwares. A central
question in this process is: What architecture design best fulfills the
desirable software requirements? To answer this question, a system designer
needs to make tradeoffs among several potentially conflicting quality
attributes. Such decisions are normally ad-hoc and rely heavily on experiences.
We propose a mathematical approach to tackle this problem. Game theory
naturally provides the basic language: Players represent requirements, and
strategies involve setting up coalitions among the players. In this way we
propose a novel model, called decomposition game, for attribute-driven design.
We present its solution concept based on the notion of cohesion and
expansion-freedom and prove that a solution always exists. We then investigate
the computational complexity of obtaining a solution. The game model and the
algorithms may serve as a general framework for providing useful guidance for
software architecture design. We present our results through running examples
and a case study on a real-life software project.Comment: 23 pages, 5 figures, a shorter version to appear at 12th
International Colloquium on Theoretical Aspects of Computing (ICTAC 2015
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps
- …
