2,944 research outputs found
Measurement-based modeling of bromine chemistry at the Dead Sea boundary layer ? Part 2: The influence of NO<sub>2</sub> on bromine chemistry at mid-latitude areas
International audienceUnderstanding the interaction between anthropogenic air pollution and Reactive Halogen Species (RHS) activity has had only limited support of direct field measurements, due to the fact that past field measurements of RHS have been mainly performed in Polar Regions. The present paper investigates the interaction between NO2 and Reactive Bromine Species (RBS) activity by model simulations based on extensive field measurements performed in the Dead Sea area, as described in a companion paper (Tas et al., 2006). The Dead Sea is an excellent natural laboratory for this investigation since elevated concentrations of BrO (up to more than 150 pptv) are frequently observed, while the average levels of NO2 are around several ppb. The results of the present study show that under the chemical mechanisms that occur at the Dead Sea, higher levels of NO2 lead to higher daily average concentrations of BrOX, as a result of an increase in the rate of the heterogeneous decomposition of BrONO2 that in turn causes an increase in the rate of the "Bromine Explosion" mechanism. The present study has shown that the influence of NO2 on BrOX production clearly reflects an enhancement of RBS activity caused by anthropogenic activity. However, above a certain threshold level of NO2 (daily average mixing ratios of 0.2 ppbv during RBS activity), the daily average concentrations of BrOX decrease for a further increase in the NO2 concentrations
Recommended from our members
Auditory, phonological and semantic factors in the recovery from Wernicke’s aphasia post stroke: predictive value and implications for rehabilitation
Background: Understanding the factors that influence language recovery in aphasia is important for improving prognosis and treatment. Chronic comprehension impairments Wernicke’s-type aphasia (WA) are associated with impairments in auditory and phonological processing, compounded by semantic and executive difficulties. This study investigated whether the recovery of auditory, phonological, semantic or executive factors underpins the recovery from WA comprehension impairments by charting changes in the neuropsychological profiles from the sub-acute to the chronic phase.
Method: This study used a prospective, longitudinal, observational design. Twelve WA participants with superior temporal lobe lesions were recruited before 2 months post stroke onset (MPO). Language comprehension was measured alongside a neuropsychological profile of auditory, phonological and semantic processing alongside phonological short-term memory and nonverbal reasoning at three post stroke time points: 2.5, 5 and 9MPO.
Results: Language comprehension displayed a strong and consistent recovery between 2.5 and 9MPO. Improvements were also seen for slow auditory temporal processing, phonological short-term memory, and semantic processing, but not for rapid auditory temporal, spectrotemporal and phonological processing. Despite their lack of improvement, rapid auditory temporal processing at 2.5MPO and phonological processing at 5MPO predicated comprehension outcomes at 9MPO.
Conclusions: These results indicate that recovery of language comprehension in WA can be predicted from fixed auditory processing in the subacute stage. This suggests that speech comprehension recovery in WA results from reorganisation of the remaining language comprehension network to enable the residual speech signal to be processed more efficiently, rather than partial recovery of underlying auditory, phonological or semantic processing abilities
Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea
International audienceThe Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br? present in the Dead Sea water. Furthermore, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br). The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the jagged diurnal pattern of BrO observed in the Dead Sea area, and for the positive correlation observed between BrO and O3 at low O3 concentrations. The present study has shown that the heterogeneous decomposition of BrONO2 has a great potential to affect the RBS activity in areas influenced by anthropogenic emissions, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes
How brains make decisions
This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum
Decision Theory (QDT) that we have developed in a series of publications since
2008. We formulate a general mathematical scheme of how decisions are taken,
using the point of view of psychological and cognitive sciences, without
touching physiological aspects. The basic principles of how intelligence acts
are discussed. The human brain processes involved in decisions are argued to be
principally different from straightforward computer operations. The difference
lies in the conscious-subconscious duality of the decision making process and
the role of emotions that compete with utility optimization. The most general
approach for characterizing the process of decision making, taking into account
the conscious-subconscious duality, uses the framework of functional analysis
in Hilbert spaces, similarly to that used in the quantum theory of
measurements. This does not imply that the brain is a quantum system, but just
allows for the simplest and most general extension of classical decision
theory. The resulting theory of quantum decision making, based on the rules of
quantum measurements, solves all paradoxes of classical decision making,
allowing for quantitative predictions that are in excellent agreement with
experiments. Finally, we provide a novel application by comparing the
predictions of QDT with experiments on the prisoner dilemma game. The developed
theory can serve as a guide for creating artificial intelligence acting by
quantum rules.Comment: Latex file, 20 pages, 3 figure
Synaesthesia: a distinct entity that is an emergent feature of adaptive neurocognitive differences
In this article, I argue that synaesthesia is not on a continuum with neurotypical cognition. Synaesthesia is special: its phenomenology is different; it has distinct causal mechanisms; and is likely to be associated with a distinct neurocognitive profile. However, not all synaesthetes are the same, and there are quantifiable differences between them. In particular, the number of types of synaesthesia that a person possesses is a hitherto underappreciated variable that predicts cognitive differences along a number of dimensions (mental imagery, sensory sensitivity, attention to detail). Together with enhanced memory, this may constitute a common core of abilities that may go some way to explaining why synaesthesia might have evolved. I argue that the direct benefits of synaesthesia are generally limited (i.e. the synaesthetic associations do not convey novel information about the world) but, nevertheless, synaesthesia may develop due to other adaptive functions (e.g. perceptual ability, memory) that necessitate changes to design features of the brain. The article concludes by suggesting that synaesthesia forces us to reconsider what we mean by a ‘normal’ mind/brain. There may be multiple ‘normal’ neurodevelopmental trajectories that can sculpt very different ways of experiencing the world, of which synaesthesia is but one.
This article is part of a discussion meeting issue ‘Bridging senses: novel insights from synaesthesia’
A Neural Network Model of Inhibitory Processing in Subliminal Priming
Masked Priming Experiments have revealed a precise set of facilitatory and inhibitory visual-motor control processes. Most notably, inhibitory effects have been identified in which prime-target compatibility induces performance costs and prime-target incompatibility induces performance benefits. We argue that this profile of data is commensurate with an ?emergency braking mechanism?, whereby responses can be retracted as a result of changing sensory evidence. The main contribution of this paper is to provide a neural network based explanation of this phenomenon. This is obtained through the use of feedforward inhibition to implement backward masking, lateral inhibition to implement response competition and opponent processing mechanisms to implement response retraction. Although the model remains simple, it does a very good job of reproducing the available masked priming data. For example, it reproduces a large spectrum of reaction time data across a number of different experimental conditions. Perhaps most notably however, it also reproduces Lateralized Readiness Potentials that have been recorded while subjects perform different conditions. In addition, it provides a concrete set of testable predictions
New Gilded Age or Old Normal?
Since the mid-1970s, inequality has increased under Democratic as well as Republican administrations and Congresses. In retrospect, the four and a half decades from 1933 to 1978 were a historical aberration. The longer-term trend toward more inequality in capitalist economies, which prevailed before this period, has resumed after it. That leads us to conclude that there may well be no technocratic or tax policy fix for capitalism’s tendency to generate ever more inequality
Exact, time-independent estimation of clone size distributions in normal and mutated cells
Biological tools such as genetic lineage tracing, three dimensional confocal microscopy and next generation DNA sequencing are providing new ways to quantify the distribution of clones of normal and mutated cells. Population-wide clone size distributions in vivo are complicated by multiple cell types, and overlapping birth and death processes. This has led to the increased need for mathematically informed models to understand their biological significance. Standard approaches usually require knowledge of clonal age. We show that modelling on clone size independent of time is an alternative method that offers certain analytical advantages; it can help parameterize these models, and obtain distributions for counts of mutated or proliferating cells, for example. When applied to a general birth-death process common in epithelial progenitors this takes the form of a gamblers ruin problem, the solution of which relates to counting Motzkin lattice paths. Applying this approach to mutational processes, an alternative, exact, formulation of the classic Luria Delbruck problem emerges. This approach can be extended beyond neutral models of mutant clonal evolution, and also describe some distributions relating to sub-clones within a tumour. The approaches above are generally applicable to any Markovian branching process where the dynamics of different "coloured" daughter branches are of interest
- …
