12,048 research outputs found
Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters
Cache timing attacks use shared caches in multi-core processors as side
channels to extract information from victim processes. These attacks are
particularly dangerous in cloud infrastructures, in which the deployed
countermeasures cause collateral effects in terms of performance loss and
increase in energy consumption. We propose to monitor the victim process using
an independent monitoring (detector) process, that continuously measures
selected Performance Monitoring Counters (PMC) to detect the presence of an
attack. Ad-hoc countermeasures can be applied only when such a risky situation
arises. In our case, the victim process is the AES encryption algorithm and the
attack is performed by means of random encryption requests. We demonstrate that
PMCs are a feasible tool to detect the attack and that sampling PMCs at high
frequencies is worse than sampling at lower frequencies in terms of detection
capabilities, particularly when the attack is fragmented in time to try to be
hidden from detection
Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions
Using the spin-polarized tunneling model and taking into account the basic
physics of ferromagnetic semiconductors, we study the temperature dependence of
the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor
(DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The
experimentally observed TMR ratio is in reasonable agreement with our result
based on the typical material parameters. It is also shown that the TMR ratio
has a strong dependence on both the itinerant-carrier density and the magnetic
ion density in the DMS electrodes. This can provide a potential way to achieve
larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR
Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
We have carried out high-resolution angle-resolved photoemission measurements
on the Cebased heavy fermion compound CePt2In7 that exhibits stronger
two-dimensional character than the prototypical heavy fermion system CeCoIn5.
Multiple Fermi surface sheets and a complex band structure are clearly
resolved. We have also performed detailed band structure calculations on
CePt2In7. The good agreement found between our measurements and the
calculations suggests that the band renormalization effect is rather weak in
CePt2In7. A comparison of the common features of the electronic structure of
CePt2In7 and CeCoIn5 indicates that CeCoIn5 shows a much stronger band
renormalization effect than CePt2In7. These results provide new information for
understanding the heavy fermion behaviors and unconventional superconductivity
in Ce-based heavy fermion systems.Comment: 24 pages, 10 figure
Structure and electronic properties of the () SnAu/Au(111) surface alloy
We have investigated the atomic and electronic structure of the
() SnAu/Au(111) surface alloy. Low
energy electron diffraction and scanning tunneling microscopy measurements show
that the native herringbone reconstruction of bare Au(111) surface remains
intact after formation of a long range ordered () SnAu2/Au(111) surface alloy. Angle-resolved
photoemission and two-photon photoemission spectroscopy techniques reveal
Rashba-type spin-split bands in the occupied valence band with comparable
momentum space splitting as observed for the Au(111) surface state, but with a
hole-like parabolic dispersion. Our experimental findings are compared with
density functional theory (DFT) calculation that fully support our experimental
findings. Taking advantage of the good agreement between our DFT calculations
and the experimental results, we are able to extract that the occupied Sn-Au
hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid
bands are of (p, d)-orbital character. Hence, we can conclude that the
Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is
caused by the significant mixing of Au d- to Sn s-states in conjunction with
the strong atomic spin-orbit coupling of Au, i.e., of the substrate.Comment: Copyright:
https://journals.aps.org/authors/transfer-of-copyright-agreement; All
copyrights by AP
- …
