82,296 research outputs found

    A non-monotonic constitutive model is not necessary to obtain shear banding phenomena in entangled polymer solutions

    Get PDF
    In 1975 Doi and Edwards predicted that entangled polymer melts and solutions can have a constitutive instability, signified by a decreasing stress for shear rates greater than the inverse of the reptation time. Experiments did not support this, and more sophisticated theories incorporated Marrucci's idea (1996) of removing constraints by advection; this produced a monotonically increasing stress and thus stable constitutive behavior. Recent experiments have suggested that entangled polymer solutions may possess a constitutive instability after all, and have led some workers to question the validity of existing constitutive models. In this Letter we use a simple modern constitutive model for entangled polymers, the non-stretching Rolie-Poly model with an added solvent viscosity, and show that (1) instability and shear banding is captured within this simple class of models; (2) shear banding phenomena is observable for weakly stable fluids in flow geometries that impose a sufficiently inhomogeneous total shear stress; (3) transient phenomena can possess inhomogeneities that resemble shear banding, even for weakly stable fluids. Many of these results are model-independent.Comment: 5 figure

    The remote sensing of aquatic macrophytes Part 1: Color-infrared aerial photography as a tool for identification and mapping of littoral vegetation. Part 2: Aerial photography as a quantitative tool for the investigation of aquatic ecosystems

    Get PDF
    Research was initiated to use aerial photography as an investigative tool in studies that are part of an intensive aquatic ecosystem research effort at Lake Wingra, Madison, Wisconsin. It is anticipated that photographic techniques would supply information about the growth and distribution of littoral macrophytes with efficiency and accuracy greater than conventional methods

    Delamination micromechanics analysis

    Get PDF
    A three-dimensional finite element analysis was developed which includes elastoplastic, orthotropic material response, and fracture initiation and propagation. Energy absorption due to physical failure processes characteristic of the heterogeneous and anisotropic nature of composite materials is modeled. A local energy release rate in the presence of plasticity was defined and used as a criterion to predict the onset and growth of cracks in both micromechanics and macromechanics analyses. This crack growth simulation technique is based upon a virtual crack extension method. A three-dimensional finite element micromechanics model is used to study the effects of broken fibers, cracked matrix and fiber-matrix debond on the fracture toughness of the unidirectional composite. The energy release rates at the onset of unstable crack growth in the micromechanics analyses are used as critical energy release rates in the macromechanics analysis. This integrated micromechanical and macromechanical fracture criterion is shown to be very effective in predicting the onset and growth of cracks in general multilayered composite laminates by applying the criterion to a single-edge notched graphite/epoxy laminate subjected to implane tension normal to the notch

    Stiffness reductions during tensile fatigue testing of graphite/epoxy angle-ply laminates

    Get PDF
    Tensile fatigue data was generated under carefully controlled test conditions. A computerized data acquisition system was used to permit the measurement of dynamic modulus without interrupting the fatigue cycling. Two different 8-ply laminate configurations, viz, + or - 45 (2s) and + or - 67.5 (2s), of a T300/5208 graphite/epoxy composite were tested. The + or - 45 (2s) laminate did exhibit some modulus decay, although there was no well-defined correlation with applied stress level or number of cycles. The + or - 67.5 (2s) laminate did not exhibit any measurable modulus decay. Secondary effects observed included a small but distinct difference between modulus as measured statically and dynamically, a slight recovery of the modulus decay after a test interruption, and a significant viscoelastic (creep) response of the + or - 45 (2s) laminate during fatigue testing

    Analytical study of effects of severe turbulence on flight motions of a typical subsonic jet-transport airplane

    Get PDF
    Atmospheric turbulence effects on stability and response characteristics of subsonic jet transport aircraf

    Stencils and problem partitionings: Their influence on the performance of multiple processor systems

    Get PDF
    Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems

    Integrated maneuvering and life support system simulation Final report

    Get PDF
    Integrated maneuvering and life support system simulatio

    Experimental comparison of icing cloud instruments

    Get PDF
    Icing cloud instruments were tested in the spray cloud Icing Research Tunnel (IRT) in order to determine their relative accuracy and their limitations over a broad range of conditions. It was found that the average of the readings from each of the liquid water content (LWC) instruments tested agreed closely with each other and with the IRT calibration; but all have a data scatter (+ or - one standard deviation) of about + or - 20 percent. The effect of this + or - 20 percent uncertainty is probably acceptable in aero-penalty and deicer experiments. Existing laser spectrometers proved to be too inaccurate for LWC measurements. The error due to water runoff was the same for all ice accretion LWC instruments. Any given laser spectrometer proved to be highly repeatable in its indications of volume median drop size (DVM), LWC and drop size distribution. However, there was a significant disagreement between different spectrometers of the same model, even after careful standard calibration and data analysis. The scatter about the mean of the DVM data from five Axial Scattering Spectrometer Probes was + or - 20 percent (+ or - one standard deviation) and the average was 20 percent higher than the old IRT calibration. The + or - 20 percent uncertainty in DVM can cause an unacceptable variation in the drag coefficient of an airfoil with ice; however, the variation in a deicer performance test may be acceptable

    Are there socioeconomic gradients in stage and grade of breast cancer at diagnosis? Cross sectional analysis of UK cancer registry data

    Get PDF
    Socioeconomic gradients in uptake of breast cancer screening in the United Kingdom should, intuitively, lead to socioeconomic gradients in disease progression at diagnosis. However, studies have found little evidence of such an effect. Although this could be interpreted as evidence that socioeconomic gradients in uptake of screening do not have clinically important consequences, all of the published studies have used data from before (pre-1988) or during the early stages (1988-95) of implementation of the national breast cancer screening programme. We investigated the relation between socioeconomic position and progression of breast cancer at diagnosis by using recent data from the Northern and Yorkshire Cancer Registry and Information Service (NYCRIS), which is estimated to achieve around 93% ascertainment

    Finite element for rotor/stator interactive forces in general engine dynamic simulation. Part 1: Development of bearing damper element

    Get PDF
    A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases
    corecore