851 research outputs found
Neural Network-Based Equations for Predicting PGA and PGV in Texas, Oklahoma, and Kansas
Parts of Texas, Oklahoma, and Kansas have experienced increased rates of
seismicity in recent years, providing new datasets of earthquake recordings to
develop ground motion prediction models for this particular region of the
Central and Eastern North America (CENA). This paper outlines a framework for
using Artificial Neural Networks (ANNs) to develop attenuation models from the
ground motion recordings in this region. While attenuation models exist for the
CENA, concerns over the increased rate of seismicity in this region necessitate
investigation of ground motions prediction models particular to these states.
To do so, an ANN-based framework is proposed to predict peak ground
acceleration (PGA) and peak ground velocity (PGV) given magnitude, earthquake
source-to-site distance, and shear wave velocity. In this framework,
approximately 4,500 ground motions with magnitude greater than 3.0 recorded in
these three states (Texas, Oklahoma, and Kansas) since 2005 are considered.
Results from this study suggest that existing ground motion prediction models
developed for CENA do not accurately predict the ground motion intensity
measures for earthquakes in this region, especially for those with low
source-to-site distances or on very soft soil conditions. The proposed ANN
models provide much more accurate prediction of the ground motion intensity
measures at all distances and magnitudes. The proposed ANN models are also
converted to relatively simple mathematical equations so that engineers can
easily use them to predict the ground motion intensity measures for future
events. Finally, through a sensitivity analysis, the contributions of the
predictive parameters to the prediction of the considered intensity measures
are investigated.Comment: 5th Geotechnical Earthquake Engineering and Soil Dynamics Conference,
Austin, TX, USA, June 10-13. (2018
A framework for orthology assignment from gene rearrangement data
Abstract. Gene rearrangements have successfully been used in phylogenetic reconstruction and comparative genomics, but usually under the assumption that all genomes have the same gene content and that no gene is duplicated. While these assumptions allow one to work with organellar genomes, they are too restrictive when comparing nuclear genomes. The main challenge is how to deal with gene families, specifically, how to identify orthologs. While searching for orthologies is a common task in computational biology, it is usually done using sequence data. We approach that problem using gene rearrangement data, provide an optimization framework in which to phrase the problem, and present some preliminary theoretical results.
Recommended from our members
Synthesis of accelerograms compatible with the Chinese GB 50011-2001 design spectrum via harmonic wavelets: artificial and historic records
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals’ response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice
Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms
Copyright: © 2015 Solà et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes
Many cases of non-standard genetic codes are known in mitochondrial genomes.
We carry out analysis of phylogeny and codon usage of organisms for which the
complete mitochondrial genome is available, and we determine the most likely
mechanism for codon reassignment in each case. Reassignment events can be
classified according to the gain-loss framework. The gain represents the
appearance of a new tRNA for the reassigned codon or the change of an existing
tRNA such that it gains the ability to pair with the codon. The loss represents
the deletion of a tRNA or the change in a tRNA so that it no longer translates
the codon. One possible mechanism is Codon Disappearance, where the codon
disappears from the genome prior to the gain and loss events. In the
alternative mechanisms the codon does not disappear. In the Unassigned Codon
mechanism, the loss occurs first, whereas in the Ambiguous Intermediate
mechanism, the gain occurs first. Codon usage analysis gives clear evidence of
cases where the codon disappeared at the point of the reassignment and also
cases where it did not disappear. Codon disappearance is the probable
explanation for stop to sense reassignments and a small number of reassignments
of sense codons. However, the majority of sense to sense reassignments cannot
be explained by codon disappearance. In the latter cases, by analysis of the
presence or absence of tRNAs in the genome and of the changes in tRNA
sequences, it is sometimes possible to distinguish between the Unassigned Codon
and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments
follow the same scenario and that it is necessary to consider the details of
each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary
information). To appear in J.Mol.Evo
Understanding single-station ground motion variability and uncertainty (sigma) – Lessons learnt from EUROSEISTEST
Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30-50%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φS2S (20-30%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset’s advantages is the large number of recordings per station (9-90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φSS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φSS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φSS, provided that: 1. the magnitude scaling errors are accommodated by the event terms; 2. there are no distance scaling errors (use of a regionally applicable model). Site terms (φS2S) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e. for hard rock
Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)
Abstract Fifty earthquakes that occurred in Hungary (central
part of the Pannonian basin) with local magnitude ML
ranging from 0.8 to 4.5 have been analyzed. The digital
seismograms used in this study were recorded by six permanent
broad-band stations and twenty short-period ones at
hypocentral distances between 10 and 327 km. The displacement
spectra for P- and SH-waves were analyzed according
to Brune’s source model. Observed spectra were corrected
for path-dependent attenuation effects using an independent
regional estimate of the quality factor QS. To correct spectra
for near-surface attenuation, the k parameterwas calculated,
obtaining it fromwaveforms recorded at short epicentral distances.
The values of the k parameter vary between 0.01 to
0.06 s with a mean of 0.03 s for P-waves and between 0.01
to 0.09 s with a mean of 0.04 s for SH-waves. After correction
for attenuation effects, spectral parameters (corner
frequency and low-frequency spectral level) were estimated
by a grid search algorithm. The obtained seismic moments
range from4.21×1011 to 3.41×1015 Nm (1.7≤Mw ≤4.3).
The source radii are between 125 and 1343 m. Stress drop
values vary between 0.14 and 32.4 bars with a logarithmic
mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear
relationship between local andmomentmagnitudes has been
established. The obtained scaling relations show slight evidence
of self-similarity violation. However, due to the high
scatter of our data, the existence of self-similarity cannot be
excluded
Next-generation mitogenomics: A comparison of approaches applied to caecilian amphibian phylogeny
Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case
- …
