5,718 research outputs found
Synthetic Quantum Systems
So far proposed quantum computers use fragile and environmentally sensitive
natural quantum systems. Here we explore the new notion that synthetic quantum
systems suitable for quantum computation may be fabricated from smart
nanostructures using topological excitations of a stochastic neural-type
network that can mimic natural quantum systems. These developments are a
technological application of process physics which is an information theory of
reality in which space and quantum phenomena are emergent, and so indicates the
deep origins of quantum phenomena. Analogous complex stochastic dynamical
systems have recently been proposed within neurobiology to deal with the
emergent complexity of biosystems, particularly the biodynamics of higher brain
function. The reasons for analogous discoveries in fundamental physics and
neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil
The Calculation of Vacuum Properties from the Global Color Symmetry Model
A modified method for calculating the non-perturbative quark vacuum
condensates from the global color symmetry model is derived. Within this
approach it is shown that the vacuum condensates are free of ultraviolet
divergence which is different from previous studies. As a special, the
two-quark condensate and the mixed quark-gluon condensate are calculated. A
comparision with the results of the other nonperturbative QCD approaches is
given.Comment: 17 page
Diquarks: condensation without bound states
We employ a bispinor gap equation to study superfluidity at nonzero chemical
potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory,
QC2D, is an excellent exemplar: the order of truncation of the quark-quark
scattering kernel: K, has no qualitative impact, which allows a straightforward
elucidation of the effects of mu when the coupling is strong. In rainbow-ladder
truncation, diquark bound states appear in the spectrum of the three-colour
theory, a defect that is eliminated by an improvement of K. The corrected gap
equation describes a superfluid phase that is semi-quantitatively similar to
that obtained using the rainbow truncation. A model study suggests that the
width of the superfluid gap and the transition point in QC2D provide reliable
quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi
Timelike self-similar spherically symmetric perfect-fluid models
Einstein's field equations for timelike self-similar spherically symmetric
perfect-fluid models are investigated. The field equations are rewritten as a
first-order system of autonomous differential equations. Dimensionless
variables are chosen in such a way that the number of equations in the coupled
system is reduced as far as possible and so that the reduced phase space
becomes compact and regular. The system is subsequently analysed qualitatively
using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure
A diquark model for baryons containing one heavy quark
We present a phenomenological ansatz for coupling a heavy quark with two
light quarks to form a heavy baryon. The heavy quark is treated in the heavy
mass limit, and the light quark dynamics is approximated by propagating scalar
and axial vector 'diquarks'. The resulting effective lagrangian, which
incorporates heavy quark and chiral symmetry, describes interactions of heavy
baryons with Goldstone bosons in the low energy region. As an application, the
Isgur--Wise form factors are estimated.Comment: 9 pages + 8 figures, both as uuencoded PS, discussion of Bjorken
limit (1 par + 1 fig) added, to appear in Z.Phys.
Tomographic imaging and scanning thermal microscopy: thermal impedance tomography
The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given
Feasibility study of the transonic biplane concept for transport aircraft application
Investigations were conducted to evaluate the feasibility of a transonic biplane consisting of a forward-mounted swept-back lower wing, a rear-mounted swept-forward upper wing, and a vertical fin connecting the wings at their tips. This wing arrangement results in significant reductions in induced drag relative to a monoplane designed with the same span, and it allows for a constant-section fuselage shape while closely matching an ideal area distribution curve for M = 0.95 cruise. However, no significant reductions in ramp weight were achieved for the biplane relative to a monoplane with the same mission capability. Flutter analyses of the biplane revealed both symmetric and antisymmetric instabilities that occur well below the required flutter speed. Further studies will be required to determine if acceptable flutter speeds can be achieved through the elimination of the instabilities by passive means or by active controls. Configurations designed for other missions, especially those with lower Mach numbers and lower dynamic pressures, should be examined since the geometries suitable for those design constraints might avoid the weight penalties and flutter instabilities which prevent exploitation of induced drag benefits for the configuration studied
Vacuum Condensates in the Global Color Symmetry Model
Based on the quark propagator in the instanton dilute liquid approximation,
we calculate analytically the quark condensate , the mixed quark
gluon condensate $g_{s}$ and the four quark
condensate at the mean field level in the
framework of global color symmetry model. The numerical calculation shows that
the values of these condensates are compatible with the ranges determined by
other nonperturbative approaches. Moreover, we find that for nonlocal four
quark condensate the previous vacuum saturation assumption is not a good
approximation even at the mean field level.Comment: 8 latex pages, no figure, Submitted to Phys. Rev.
Squeezed gluon vacuum and the global colour model of QCD
We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon
condensate can explain the existence of an infrared singular gluon propagator
frequently used in calculations within the global colour model. In particular,
it reproduces a recently proposed QCD-motivated model where low energy chiral
parameters were computed as a function of a dynamically generated gluon mass.
We show how the strength of the confining interaction of this gluon propagator
and the value of the physical gluon condensate may be connected.Comment: 13 pages, LaTe
- …
