3,851 research outputs found

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    Get PDF
    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)

    Universality in movie rating distributions

    Full text link
    In this paper histograms of user ratings for movies (1,...,10) are analysed. The evolving stabilised shapes of histograms follow the rule that all are either double- or triple-peaked. Moreover, at most one peak can be on the central bins 2,...,9 and the distribution in these bins looks smooth `Gaussian-like' while changes at the extremes (1 and 10) often look abrupt. It is shown that this is well approximated under the assumption that histograms are confined and discretised probability density functions of L\'evy skew alpha-stable distributions. These distributions are the only stable distributions which could emerge due to a generalized central limit theorem from averaging of various independent random avriables as which one can see the initial opinions of users. Averaging is also an appropriate assumption about the social process which underlies the process of continuous opinion formation. Surprisingly, not the normal distribution achieves the best fit over histograms obseved on the web, but distributions with fat tails which decay as power-laws with exponent -(1+alpha) (alpha=4/3). The scale and skewness parameters of the Levy skew alpha-stable distributions seem to depend on the deviation from an average movie (with mean about 7.6). The histogram of such an average movie has no skewness and is the most narrow one. If a movie deviates from average the distribution gets broader and skew. The skewness pronounces the deviation. This is used to construct a one parameter fit which gives some evidence of universality in processes of continuous opinion dynamics about taste.Comment: 8 pages, 5 figures, accepted for publicatio

    Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Get PDF
    The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m<sup>2</sup> (g SO<sub>4</sub><sup>-2</sup>)<sup>-1</sup>, which compare to US values of 0.030 and 13.9 m<sup>2</sup> (g SO<sub>4</sub><sup>-2</sup>)<sup>-1</sup>. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (<i>F<sub>L</sub> </i> and <i>F<sub>U</sub></i>, respectively, in W m<sup>-2</sup>) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of <i>F<sub>L</sub></i>=-0.750, <i>F<sub>U</sub></i>=-0.930, and <font face='Symbol'>D</font><i>F<sub>U,L</sub></i>=24% for full sky calculations without clouds and <i>F<sub>L</sub></i>=-0.485, <i>F<sub>U</sub></i>=-0.605, and <font face='Symbol'>D</font><i>F<sub>U,L</sub></i>=25% when clouds are included. Regionally, <font face='Symbol'>D</font><i>F<sub>U,L</sub></i>=48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, <font face='Symbol'>D</font><i>F<sub>U,L </sub></i>varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is <i>F<sub>L</sub></i>=-0.314 and <i>F<sub>U</sub></i>=-0.404, which yield normalized direct radiative forcings (<i>G</i>) of <i>G<sub>L</sub></i>=-205 W (g SO<sub>4</sub><sup>-2</sup>)<sup>-1</sup> and <i>G<sub>U</sub></i>=-264 W (g SO<sub>4</sub><sup>-2</sup>)<sup>-1</sup>

    Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    No full text
    International audienceThe effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO42?)?1, which compare to US values of 0.030 and 13.9 m2 (g SO42?)?1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m2?) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL = ?0.750, FU = ?0.930, and ?FU,L = 24% for full sky calculations without clouds and FL = ?0.485, FU = ?0.605, and ?FU,L = 25% when clouds are included. Regionally, ?FU,L = 48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, ?FU,L varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is FL = ?0.314 and FU = ?0.404, which yield normalized direct radiative forcings (G) of GL = ?205 W (g SO42?)?1 and GU = ?264 W (g SO42?)?1

    Spontaneous emission of an atom placed near a nanobelt of elliptical cross-section

    Get PDF
    Spontaneous emission of an atom (molecule) placed near a nanocylinder of elliptical cross-section of an arbitrary composition is studied. The analytical expressions have been obtained for the radiative and nonradiative channels of spontaneous decay and investigated in details.Comment: 35 pages, 11 figure

    Photonic mode density effects on single-molecule fluorescence blinking

    Get PDF
    We investigated the influence of the photonic mode density (PMD) on the triplet dynamics of individual chromophores on a dielectric interface by comparing their response in the presence and absence of a nearby gold film. Lifetimes of the excited singlet state were evaluated in ordet to measure directly the PMD at the molecules position. Triplet state lifetimes were simultaneously determined by statistical analysis of the detection time of the fluorescence photons. The observed singlet decay rates are in agreement with the predicted PMD for molecules with different orientations. The triplet decay rate is modified in a fashion correlated to the singlet decay rate. These results show that PMD engineering can lead to an important suppression of the fluorescence, introducing a novel aspect of the physical mechanism to enhance fluorescence intensity in PMD-enhancing systems such as plasmonic devices

    Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    No full text
    International audienceThe effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2)-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2)-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, DFU,L varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is FL=-0.314 and FU=-0.404, which yield normalized direct radiative forcings (G) of GL=-205 W (g SO4-2)-1 and GU=-264 W (g SO4-2)-1

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.

    Using coloured filters to reduce the symptoms of visual stress in children with reading delay

    Get PDF
    Background: Meares Irlen Syndrome (MIS), otherwise known as “visual stress”, is one condition that can cause difficulties with reading. Aim: This study aimed to compare the effect of two coloured-filter systems on the symptoms of visual stress in children with reading delay. Methods: The study design was a pre-test, post-test, randomized head-to-head comparison of two filter systems on the symptoms of visual stress in school children. A total of 68 UK mainstream schoolchildren with significant impairment in reading ability completed the study. Results: The filter systems appeared to have a large effect on the reported symptoms between pre and post three-month time points (d = 2.5, r = 0.78). Both filter types appeared to have large effects (Harris d = 1.79, r = 0.69 and DRT d = 3.22, r = 0.85). Importantly, 35% of participants’ reported that their symptoms had resolved completely; 72% of the 68 children appeared to gain improvements in three or more visual stress symptoms. Conclusion and significance: The reduction in symptoms, which appeared to be brought about by the use of coloured filters, eased the visual discomfort experienced by these children when reading. This type of intervention therefore has the potential to facilitate occupational engagement
    corecore