51,662 research outputs found
Recommended from our members
Open educational resources and teaching in the 21st century: questions concerning authority
As a source of materials for education the Web is, to a large extent, shifting ground. Open Educational Resources (OER) provided by Higher Education Institutions constitute, at least in principle, a reliable category of Web-based resources given their association with traditional forms of expert authority. Nevertheless, OER embody different aspects of academic thinking and practice, competing, in an unlevelled field, with other sources that may provide a much more immediate appeal in that they afford quick and easy consumption of information delivered in a piecemeal, often uncritical, fashion.
This paper draws upon a piece of research in the area of ‘online informal learning’ to illustrate issues arising from the availability of open content and, in particular, OER. This research suggests a number of aspects related to the impact of open content on assumed boundaries between teacher/learner, formal/informal learning, training/education, content/presentation and, crucially, in how the blurring of these boundaries may have an impact on the location of ‘value’ within views of education in which marketing and business discourses predominate. The paper argues that, despite the need for critical debate on issues regarding validation, current arguments focusing on ‘expertise’ risk diluting its significance in subtle yet fundamental ways
Explicit Actions for Electromagnetism with Two Gauge Fields with Only one Electric and one Magnetic Physical Fields
We extend the work of Mello et al. based in Cabbibo and Ferrari concerning
the description of electromagnetism with two gauge fields from a variational
principle, i.e. an action. We provide a systematic independent derivation of
the allowed actions which have only one magnetic and one electric physical
fields and are invariant under the discrete symmetries and . We conclude
that neither the Lagrangian, nor the Hamiltonian, are invariant under the
electromagnetic duality rotations. This agrees with the weak-strong coupling
mixing characteristic of the duality due to the Dirac quantization condition
providing a natural way to differentiate dual theories related by the duality
rotations (the energy is not invariant). Also the standard electromagnetic
duality rotations considered in this work violate both and by inducing
Hopf terms (theta terms) for each sector and a mixed Maxwell term. The
canonical structure of the theory is briefly addressed and the 'magnetic' gauge
sector is interpreted as a ghost sector.Comment: v2: 12 pages; References added, discussion concerning degrees of
freedom corrected; v3: is now used the standard normalization of 1/4 in the
actions; the possibility of theta being a pseudo-scalar implied a title
changing; eq (23) added; signs corrected in equations (39,45-47); references
adde
Nontopological self-dual Maxwell-Higgs vortices
We study the existence of self-dual nontopological vortices in generalized
Maxwell-Higgs models recently introduced in Ref. \cite{gv}. Our investigation
is explicitly illustrated by choosing a sixth-order self-interaction potential,
which is the simplest one allowing the existence of nontopological structures.
We specify some Maxwell-Higgs models yielding BPS nontopological vortices
having energy proportional to the magnetic flux, , and whose profiles
are numerically achieved. Particularly, we investigate the way the new
solutions approach the boundary values, from which we verify their
nontopological behavior. Finally, we depict the profiles numerically found,
highlighting the main features they present.Comment: 6 pages, 4 figure
Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks
We present numerical magnetohydrodynamic (MHD) simulations of a magnetized
accretion disk launching trans-Alfvenic jets. These simulations, performed in a
2.5 dimensional time-dependent polytropic resistive MHD framework, model a
resistive accretion disk threaded by an initial vertical magnetic field. The
resistivity is only important inside the disk, and is prescribed as eta =
alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk
scale height and the coefficient alpha_m is smaller than unity. By performing
the simulations over several tens of dynamical disk timescales, we show that
the launching of a collimated outflow occurs self-consistently and the ejection
of matter is continuous and quasi-stationary. These are the first ever
simulations of resistive accretion disks launching non-transient ideal MHD
jets. Roughly 15% of accreted mass is persistently ejected. This outflow is
safely characterized as a jet since the flow becomes super-fastmagnetosonic,
well-collimated and reaches a quasi-stationary state. We present a complete
illustration and explanation of the `accretion-ejection' mechanism that leads
to jet formation from a magnetized accretion disk. In particular, the magnetic
torque inside the disk brakes the matter azimuthally and allows for accretion,
while it is responsible for an effective magneto-centrifugal acceleration in
the jet. As such, the magnetic field channels the disk angular momentum and
powers the jet acceleration and collimation. The jet originates from the inner
disk region where equipartition between thermal and magnetic forces is
achieved. A hollow, super-fastmagnetosonic shell of dense material is the
natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at
http://www-laog.obs.ujf-grenoble.fr/~fcass
- …
