9,395 research outputs found
Distance distribution in random graphs and application to networks exploration
We consider the problem of determining the proportion of edges that are
discovered in an Erdos-Renyi graph when one constructs all shortest paths from
a given source node to all other nodes. This problem is equivalent to the one
of determining the proportion of edges connecting nodes that are at identical
distance from the source node. The evolution of this quantity with the
probability of existence of the edges exhibits intriguing oscillatory behavior.
In order to perform our analysis, we introduce a new way of computing the
distribution of distances between nodes. Our method outperforms previous
similar analyses and leads to estimates that coincide remarkably well with
numerical simulations. It allows us to characterize the phase transitions
appearing when the connectivity probability varies.Comment: 12 pages, 8 figures (18 .eps files
Description of Pairing correlation in Many-Body finite systems with density functional theory
Different steps leading to the new functional for pairing based on natural
orbitals and occupancies proposed in ref. [D. Lacroix and G. Hupin,
arXiv:1003.2860] are carefully analyzed. Properties of quasi-particle states
projected onto good particle number are first reviewed. These properties are
used (i) to prove the existence of such a functional (ii) to provide an
explicit functional through a 1/N expansion starting from the BCS approach
(iii) to give a compact form of the functional summing up all orders in the
expansion. The functional is benchmarked in the case of the picked fence
pairing Hamiltonian where even and odd systems, using blocking technique are
studied, at various particle number and coupling strength, with uniform and
random single-particle level spacing. In all cases, a very good agreement is
found with a deviation inferior to 1% compared to the exact energy.Comment: 14 pages, 9 figure
Onset of collective and cohesive motion
We study the onset of collective motion, with and without cohesion, of groups
of noisy self-propelled particles interacting locally. We find that this phase
transition, in two space dimensions, is always discontinuous, including for the
minimal model of Vicsek et al. [Phys. Rev. Lett. {\bf 75},1226 (1995)] for
which a non-trivial critical point was previously advocated. We also show that
cohesion is always lost near onset, as a result of the interplay of density,
velocity, and shape fluctuations.Comment: accepted for publication in Phys. Rev. Let
A phenomenological model for structural phase transitions in incommensurate alkane/urea inclusion compounds
n-Alkane/urea inclusion compounds are crystalline materials in which n-alkane ‘guest’ molecules are located within parallel one-dimensional ‘host’ tunnels formed by a helical hydrogen-bonded arrangement of urea molecules. The periodic repeat distance of the guest molecules along the host tunnels is incommensurate with the periodic repeat distance of the host substructure. The structural properties of the high-temperature phase of these materials (phase I), which exist at ambient temperature, are described by a (3 + 1)-dimensional superspace. Recent publications have suggested that, in the prototypical incommensurate composite systems, n-nonadecane/urea and n-hexadecane/urea, two low-temperature phases II and ‘III’ exist and that one or both of these phases are described by a (3 + 2)-dimensional superspace. We present a phenomenological model based on symmetry considerations and developed in the frame of a pseudo-spin–phonon coupling mechanism, which accounts for the mechanisms responsible for the I ↔ II ↔ ‘III’ phase sequence. With reference to published experimental data, we demonstrate that, in all phases of these incommensurate materials, the structural properties are described by (3 + 1)-dimensional superspace groups. Around the temperature of the II ↔ ‘III’ transition, the macroscopic properties of the material are not actually associated with a phase transition, but instead represent a ‘crossover’ between two regimes involving different couplings between relevant order parameters
Density-matrix functionals for pairing in mesoscopic superconductors
A functional theory based on single-particle occupation numbers is developed
for pairing. This functional, that generalizes the BCS approach, directly
incorporates corrections due to particle number conservation. The functional is
benchmarked with the pairing Hamiltonian and reproduces perfectly the energy
for any particle number and coupling.Comment: 4 pages, 4 figures, revised versio
A vision for global monitoring of biological invasions
Managing biological invasions relies on good global coverage of species distributions. Accurate information on alien species distributions, obtained from international policy and cross-border co-operation, is required to evaluate trans-boundary and trading partnership risks. However, a standardized approach for systematically monitoring alien species and tracking biological invasions is still lacking. This Perspective presents a vision for global observation and monitoring of biological invasions. We show how the architecture for tracking biological invasions is provided by a minimum information set of Essential Variables, global collaboration on data sharing and infrastructure, and strategic contributions by countries. We show how this novel, synthetic approach to an observation system for alien species provides a tangible and attainable solution to delivering the information needed to slow the rate of new incursions and reduce the impacts of invaders. We identify three Essential Variables for Invasion Monitoring; alien species occurrence, species alien status and alien species impact. We outline how delivery of this minimum information set by joint, complementary contributions from countries and global community initiatives is possible. Country contributions are made feasible using a modular approach where all countries are able to participate and strategically build their contributions to a global information set over time. The vision we outline will deliver wide-ranging benefits to countries and international efforts to slow the rate of biological invasions and minimize their environmental impacts. These benefits will accrue over time as global coverage and information on alien species increases
Yield stress and shear-banding in granular suspensions
We study the emergence of a yield stress in dense suspensions of non-Brownian
particles, by combining local velocity and concentration measurements using
Magnetic Resonance Imaging with macroscopic rheometric experiments. We show
that the competition between gravity and viscous stresses is at the origin of
the development of a yield stress in these systems at relatively low volume
fractions. Moreover, it is accompanied by a shear banding phenomenon that is
the signature of this competition. However, if the system is carefully density
matched, no yield stress is encountered until a volume fraction of 62.7 0.3%
Scoping study on natural resources and climate change in Southeast Asia with a focus on agriculture. Final report
Climate change / Natural resources / Environmental effects / Agroecology / Agricultural production / Crops / Cropping systems / Farming systems / Livestock / Fisheries / Food security / Water management / Economic aspects / Rural poverty / Policy / Nutrient management / South East Asia / Cambodia / Laos / Thailand / Vietnam / Myanmar / China / Greater Mekong Subregion / Tonle Sap / Yunnan
Lifetime of the first and second collective excitations in metallic nanoparticles
We determine the lifetime of the surface plasmon in metallic nanoparticles
under various conditions, concentrating on the Landau damping, which is the
dominant mechanism for intermediate-size particles. Besides the main
contribution to the lifetime, which smoothly increases with the size of the
particle, our semiclassical evaluation yields an additional oscillating
component. For the case of noble metal particles embedded in a dielectric
medium, it is crucial to consider the details of the electronic confinement; we
show that in this case the lifetime is determined by the shape of the
self-consistent potential near the surface. Strong enough perturbations may
lead to the second collective excitation of the electronic system. We study its
lifetime, which is limited by two decay channels: Landau damping and
ionization. We determine the size dependence of both contributions and show
that the second collective excitation remains as a well defined resonance.Comment: 18 pages, 5 figures; few minor change
Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs
We advance all optical spin noise spectroscopy (SNS) in semiconductors to
detection bandwidths of several hundred gigahertz by employing an ingenious
scheme of pulse trains from ultrafast laser oscillators as an optical probe.
The ultrafast SNS technique avoids the need for optical pumping and enables
nearly perturbation free measurements of extremely short spin dephasing times.
We employ the technique to highly n-doped bulk GaAs where magnetic field
dependent measurements show unexpected large g-factor fluctuations.
Calculations suggest that such large g-factor fluctuations do not necessarily
result from extrinsic sample variations but are intrinsically present in every
doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure
- …
