1,078 research outputs found
Ferromagnetic planar Josephson junction with transparent interfaces: a {\phi} junction proposal
We calculate the current phase relation of a planar Josephson junction with a
ferromagnetic weak link located on top of a thin normal metal film. Following
experimental observations we assume transparent superconductor-ferromagnet
interfaces. This provides the best interlayer coupling and a low suppression of
the superconducting correlations penetrating from the superconducting
electrodes into the ferromagnetic layer. We show that this Josephson junction
is a promising candidate for an experimental {\phi} junction realization.Comment: References update
Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux
Quasiperiodic pinning arrays, as recently demonstrated theoretically and
experimentally using a five-fold Penrose tiling, can lead to a significant
enhancement of the critical current Ic as compared to "traditional" regular
pinning arrays. However, while regular arrays showed only a sharp peak in
Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much
broader maximum at Phi<Phi1, both types of pinning arrays turned out to be
inefficient for fluxes larger than Phi1. We demonstrate theoretically and
experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose
quasiperiodic pinning arrays. This result is based on a qualitatively different
mechanism of flux pinning by quasiperiodic pinning arrays and could be
potentially useful for applications in superconducting micro-electronic devices
operating in a broad range of magnetic fields.Comment: 7 pages, 4 figure
Voltage-flux-characteristics of asymmetric dc SQUIDs
We present a detailed analysis of voltage-flux V(Phi)-characteristics for
asymmetric dc SQUIDs with various kinds of asymmetries. For finite asymmetry
alpha_I in the critical currents of the two Josephson junctions, the minima in
the V(Phi)-characteristics for bias currents of opposite polarity are shifted
along the flux axis by Delta_Phi = (alpha_I)*(beta_L) relative to each other;
beta_L is the screening parameter. This simple relation allows the
determination of alpha_I in our experiments on YBa_2Cu_3O_(7-x} dc SQUIDs and
comparison with theory. Extensive numerical simulations within a wide range of
beta_L and noise parameter Gamma reveal a systematic dependence of the transfer
function V_Phi on alpha_I and alpha_R (junction resistance asymmetry). As for
the symmetric dc SQUID, V_Phi factorizes into
g(Gamma*beta_L)*f(alpha_I,beta_L), where now f also depends on alpha_I. For
\beta_L below five we find mostly a decrease of V_Phi with increasing alpha_I,
which however can only partially account for the frequently observed
discrepancy in V_Phi between theory and experiment for high-T_c dc SQUIDs.Comment: 4 pages, 7 figures, Applied Superconductivity Conference 2000, to be
published in IEEE Trans. Appl. Supercon
Memory cell based on a Josephson junction
The Josephson junction has a doubly degenerate ground state with
the Josephson phases . We demonstrate the use of such a
Josephson junction as a memory cell (classical bit), where writing is done by
applying a magnetic field and reading by applying a bias current. In the
"store" state, the junction does not require any bias or magnetic field, but
just needs to stay cooled for permanent storage of the logical bit.
Straightforward integration with Rapid Single Flux Quantum logic is possible.Comment: to be published in AP
Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip
We experimentally study the diffraction of a Bose-Einstein condensate from a
magnetic lattice, realized by a set of 372 parallel gold conductors which are
micro fabricated on a silicon substrate. The conductors generate a periodic
potential for the atoms with a lattice constant of 4 microns. After exposing
the condensate to the lattice for several milliseconds we observe diffraction
up to 5th order by standard time of flight imaging techniques. The experimental
data can be quantitatively interpreted with a simple phase imprinting model.
The demonstrated diffraction grating offers promising perspectives for the
construction of an integrated atom interferometer.Comment: 4 pages, 4 figure
NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition
We demonstrate the operation of low-noise nano superconducting quantum
interference devices (SQUIDs) based on the high critical field and high
critical temperature superconductor YBaCuO (YBCO) as
ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The
nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have
been patterned by focused ion beam milling. This allows to precisely define the
lateral dimensions of the SQUIDs so as to achieve large magnetic coupling
between the nanoloop and individual MNPs. By means of focused electron beam
induced deposition, cobalt MNPs with typical size of several tens of nm have
been grown directly on the surface of the sensors with nanometric spatial
resolution. Remarkably, the nanoSQUIDs are operative over extremely broad
ranges of applied magnetic field (-1 T 1 T) and temperature (0.3
K 80 K). All these features together have allowed us to perform
magnetization measurements under different ambient conditions and to detect the
magnetization reversal of individual Co MNPs with magnetic moments (1 - 30)
. Depending on the dimensions and shape of the
particles we have distinguished between two different magnetic states yielding
different reversal mechanisms. The magnetization reversal is thermally
activated over an energy barrier, which has been quantified for the (quasi)
single-domain particles. Our measurements serve to show not only the high
sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these
sensors are exceptional magnetometers for the investigation of the properties
of individual nanomagnets
Phase retrapping in aφJosephson junction: onset of the butterfly effect
We investigate experimentally the retrapping of the phase in a
φ
Josephson junction upon return of the junction to the zero-voltage state. Since the Josephson energy profile
U
0
(
ψ
)
in
φ
JJ is a
2
π
periodic double-well potential with minima at
ψ
=
±
φ
mod
2
π
, the question is at which of the two minima
−
φ
or
+
φ
the phase will be trapped upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By measuring the relative population of two peaks in escape histograms, we determine the probability of phase trapping in the
±
φ
wells for different temperatures. Our experimental results agree qualitatively with theoretical predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping. Unexpectedly, this probability saturates at a value different from 50% at low temperatures
- …
