35,108 research outputs found
Quark-lepton symmetry and complementarity
We argue that the difference between the observed approximate quark-lepton
complementarity and the theoretical prediction based on realistic quark-lepton
symmetry within the seesaw mechanism may be adjusted by means of a triplet
contribution in the seesaw formula.Comment: 7 pages, RevTex
Causality in Time-Neutral Cosmologies
Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological
models in which the initial and final conditions are independently specified,
and several authors have investigated experimental tests of such models.
We point out here that GMH time-neutral models can allow superluminal
signalling, in the sense that it can be possible for observers in those
cosmologies, by detecting and exploiting regularities in the final state, to
construct devices which send and receive signals between space-like separated
points. In suitable cosmologies, any single superluminal message can be
transmitted with probability arbitrarily close to one by the use of redundant
signals. However, the outcome probabilities of quantum measurements generally
depend on precisely which past {\it and future} measurements take place. As the
transmission of any signal relies on quantum measurements, its transmission
probability is similarly context-dependent. As a result, the standard
superluminal signalling paradoxes do not apply. Despite their unusual features,
the models are internally consistent.
These results illustrate an interesting conceptual point. The standard view
of Minkowski causality is not an absolutely indispensable part of the
mathematical formalism of relativistic quantum theory. It is contingent on the
empirical observation that naturally occurring ensembles can be naturally
pre-selected but not post-selected.Comment: 5 pages, RevTeX. Published version -- minor typos correcte
New Types of Thermodynamics from -Dimensional Black Holes
For normal thermodynamic systems superadditivity , homogeneity \H and
concavity \C of the entropy hold, whereas for -dimensional black holes
the latter two properties are violated. We show that -dimensional black
holes exhibit qualitatively new types of thermodynamic behaviour, discussed
here for the first time, in which \C always holds, \H is always violated
and may or may not be violated, depending of the magnitude of the black
hole mass. Hence it is now seen that neither superadditivity nor concavity
encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to
appear in Class. Quant. Gra
Fermion Mass Hierarchy in Lifshitz Type Gauge Theory
We study the origin of fermion mass hierarchy and flavor mixing in a Lifshitz
type extension of the standard model including an extra scalar field. We show
that the hierarchical structure can originate from renormalizable interactions.
In contrast to the Froggatt-Nielsen mechanism, the higher the dimension of
associated operators, the heavier the fermion masses. Tiny masses for
left-handed neutrinos are obtained without introducing right-handed neutrinos.Comment: 13 pages; clarifications of some point
Higher Dimensional Taub-NUTs and Taub-Bolts in Einstein-Maxwell Gravity
We present a class of higher dimensional solutions to Einstein-Maxwell
equations in d-dimensions. These solutions are asymptotically locally flat,
de-Sitter, or anti-de Sitter space-times. The solutions we obtained depend on
two extra parameters other than the mass and the nut charge. These two
parameters are the electric charge, q and the electric potential at infinity,
V, which has a non-trivial contribution. We Analyze the conditions one can
impose to obtain Taub-Nut or Taub-Bolt space-times, including the
four-dimensional case. We found that in the nut case these conditions coincide
with that coming from the regularity of the one-form potential at the horizon.
Furthermore, the mass parameter for the higher dimensional solutions depends on
the nut charge and the electric charge or the potential at infinity.Comment: 11 pages, LaTe
Quantum spacetime and the renormalization group: Progress and visions
The quest for a consistent theory which describes the quantum microstructure
of spacetime seems to require some departure from the paradigms that have been
followed in the construction of quantum theories for the other fundamental
interactions. In this contribution we briefly review two approaches to quantum
gravity, namely, asymptotically safe quantum gravity and tensor models, based
on different theoretical assumptions. Nevertheless, the main goal is to find a
universal continuum limit for such theories and we explain how coarse-graining
techniques should be adapted to each case. Finally, we argue that although
seemingly different, such approaches might be just two sides of the same coin.Comment: 14 pages, 4 figures, Proceedings of "Progress and Visions in Quantum
Theory in View of Gravity: Bridging foundations of physics and mathematics",
Leipzig, 201
The Invisible Axion and Neutrino Masses
We show that in any invisible axion model due to the effects of effective
non-renormalizable interactions related to an energy scale near the
Peccei-Quinn, grand unification or even the Planck scale, active neutrinos
necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos
are also included and if appropriate cyclic symmetries are imposed, it is
possible that some of these neutrinos are heavy while others are light.Comment: An example included and new references added. To appear in PR
Numerical indications of a q-generalised central limit theorem
We provide numerical indications of the -generalised central limit theorem
that has been conjectured (Tsallis 2004) in nonextensive statistical mechanics.
We focus on binary random variables correlated in a {\it scale-invariant}
way. The correlations are introduced by imposing the Leibnitz rule on a
probability set based on the so-called -product with . We show
that, in the large limit (and after appropriate centering, rescaling, and
symmetrisation), the emerging distributions are -Gaussians, i.e., , with , and
with coefficients approaching finite values . The
particular case recovers the celebrated de Moivre-Laplace theorem.Comment: Minor improvements and corrections have been introduced in the new
version. 7 pages including 4 figure
String-Inspired Triplet See-Saw from Diagonal Embedding of SU(2)_L in SU(2)_A x SU(2)_B
Motivated by string constructions, we consider a variant on the Type II
see-saw mechanism involving the exchange of triplet representations of SU(2)_L
in which this group arises from a diagonal embedding into SU(2)_A x SU(2)_B. A
natural assignment of Standard Model lepton doublets to the two underlying
gauge groups results in a bimaximal pattern of neutrino mixings and an inverted
hierarchy in masses. Simple perturbations around this leading-order structure
can accommodate the observed pattern of neutrino masses and mixings.Comment: 8 pages; uses RevTe
- …
