15,389,895 research outputs found
Algorithmic linear dimension reduction in the l_1 norm for sparse vectors
This paper develops a new method for recovering m-sparse signals that is
simultaneously uniform and quick. We present a reconstruction algorithm whose
run time, O(m log^2(m) log^2(d)), is sublinear in the length d of the signal.
The reconstruction error is within a logarithmic factor (in m) of the optimal
m-term approximation error in l_1. In particular, the algorithm recovers
m-sparse signals perfectly and noisy signals are recovered with polylogarithmic
distortion. Our algorithm makes O(m log^2 (d)) measurements, which is within a
logarithmic factor of optimal. We also present a small-space implementation of
the algorithm. These sketching techniques and the corresponding reconstruction
algorithms provide an algorithmic dimension reduction in the l_1 norm. In
particular, vectors of support m in dimension d can be linearly embedded into
O(m log^2 d) dimensions with polylogarithmic distortion. We can reconstruct a
vector from its low-dimensional sketch in time O(m log^2(m) log^2(d)).
Furthermore, this reconstruction is stable and robust under small
perturbations
A Fast Algorithm for Well-Spaced Points and Approximate Delaunay Graphs
We present a new algorithm that produces a well-spaced superset of points
conforming to a given input set in any dimension with guaranteed optimal output
size. We also provide an approximate Delaunay graph on the output points. Our
algorithm runs in expected time , where is the
input size, is the output point set size, and is the ambient dimension.
The constants only depend on the desired element quality bounds.
To gain this new efficiency, the algorithm approximately maintains the
Voronoi diagram of the current set of points by storing a superset of the
Delaunay neighbors of each point. By retaining quality of the Voronoi diagram
and avoiding the storage of the full Voronoi diagram, a simple exponential
dependence on is obtained in the running time. Thus, if one only wants the
approximate neighbors structure of a refined Delaunay mesh conforming to a set
of input points, the algorithm will return a size graph in
expected time. If is superlinear in , then we
can produce a hierarchically well-spaced superset of size in
expected time.Comment: Full versio
Succinct Dictionary Matching With No Slowdown
The problem of dictionary matching is a classical problem in string matching:
given a set S of d strings of total length n characters over an (not
necessarily constant) alphabet of size sigma, build a data structure so that we
can match in a any text T all occurrences of strings belonging to S. The
classical solution for this problem is the Aho-Corasick automaton which finds
all occ occurrences in a text T in time O(|T| + occ) using a data structure
that occupies O(m log m) bits of space where m <= n + 1 is the number of states
in the automaton. In this paper we show that the Aho-Corasick automaton can be
represented in just m(log sigma + O(1)) + O(d log(n/d)) bits of space while
still maintaining the ability to answer to queries in O(|T| + occ) time. To the
best of our knowledge, the currently fastest succinct data structure for the
dictionary matching problem uses space O(n log sigma) while answering queries
in O(|T|log log n + occ) time. In this paper we also show how the space
occupancy can be reduced to m(H0 + O(1)) + O(d log(n/d)) where H0 is the
empirical entropy of the characters appearing in the trie representation of the
set S, provided that sigma < m^epsilon for any constant 0 < epsilon < 1. The
query time remains unchanged.Comment: Corrected typos and other minor error
Pion-kaon correlations in central Au+Au collisions at sqrt[sNN]=130 GeV
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kollegger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. Żołnierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubarev (STAR Collaboration
Optimal Query Complexity for Reconstructing Hypergraphs
In this paper we consider the problem of reconstructing a hidden weighted
hypergraph of constant rank using additive queries. We prove the following: Let
be a weighted hidden hypergraph of constant rank with n vertices and
hyperedges. For any there exists a non-adaptive algorithm that finds the
edges of the graph and their weights using
additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal
Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008].
When the weights of the hypergraph are integers that are less than
where is the rank of the hypergraph (and therefore for
unweighted hypergraphs) there exists a non-adaptive algorithm that finds the
edges of the graph and their weights using additive queries.
Using the information theoretic bound the above query complexities are tight
- …
