11,252 research outputs found
Twisted equivariant K-theory, groupoids and proper actions
In this paper we define twisted equivariant K-theory for actions of Lie
groupoids. For a Bredon-compatible Lie groupoid, this defines a periodic
cohomology theory on the category of finite CW-complexes with equivariant
stable projective bundles. A classification of these bundles is shown. We also
obtain a completion theorem and apply these results to proper actions of
groups.Comment: 26 page
Double wells, scalar fields and quantum phase transitions in ions traps
Since Hund's work on the ammonia molecule, the double well potential has
formed a key paradigm in physics. Its importance is further underlined by the
central role it plays in the Landau theory of phase transitions. Recently, the
study of entanglement properties of many-body systems has added a new angle to
the study of quantum phase transitions of discrete and continuous degrees of
freedom, i.e., spin and harmonic chains. Here we show that control of the
radial degree of freedom of trapped ion chains allows for the simulation of
linear and non-linear Klein-Gordon fields on a lattice, in which the parameters
of the lattice, the non-linearity and mass can be controlled at will. The
system may be driven through a phase transition creating a double well
potential between different configurations of the ion crystal. The dynamics of
the system are controllable, local properties are measurable and tunnelling in
the double well potential would be observable.Comment: 6 pages, 5 figure
Doppler-free laser spectroscopy of buffer gas cooled molecular radicals
We demonstrate Doppler-free saturated absorption spectroscopy of cold
molecular radicals formed by laser ablation inside a cryogenic buffer gas cell.
By lowering the temperature, congested regions of the spectrum can be
simplified, and by using different temperatures for different regions of the
spectrum a wide range of rotational states can be studied optimally. We use the
technique to study the optical spectrum of YbF radicals with a resolution of 30
MHz, measuring the magnetic hyperfine parameters of the electronic ground
state. The method is suitable for high resolution spectroscopy of a great
variety of molecules at controlled temperature and pressure, and is
particularly well-suited to those that are difficult to produce in the gas
phase.Comment: 11 pages, 4 figure
Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers
Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and
FEL applications where high energy resolution (in the order of eV) is
important. Increasing WDS energy resolution requires increasing spatial
resolution of the detectors in the dispersion direction. The common approaches
with strip detectors or small pixel detectors are not ideal. We present a novel
approach, with a sensor using rectangular pixels with a high aspect ratio
(between strips and pixels, further called "strixels"), and strixel
redistribution to match the square pixel arrays of typical ASICs while avoiding
the considerable effort of redesigning ASICs. This results in a sensor area of
17.4 mm x 77 mm, with a fine pitch of 25 m in the horizontal direction
resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs,
leveraging their low noise (43 e, or 180 eV rms). We present results
obtained with a Hammerhead ePix100 camera, showing that the small pitch (25
m) in the dispersion direction maximizes performance for both high and low
photon occupancies, resulting in optimal WDS energy resolution. The low noise
level at high photon occupancy allows precise photon counting, while at low
occupancy, both the energy and the subpixel position can be reconstructed for
every photon, allowing an ultrahigh resolution (in the order of 1 m) in
the dispersion direction and rejection of scattered beam and harmonics. Using
strixel sensors with redistribution and flip-chip bonding to standard ePix
readout ASICs results in ultrahigh position resolution (1 m) and low
noise in WDS applications, leveraging the advantages of hybrid pixel detectors
(high production yield, good availability, relatively inexpensive) while
minimizing development complexity through sharing the ASIC, hardware, software
and DAQ development with existing versions of ePix cameras.Comment: 8 pages, 6 figure
QED in external fields from the spin representation
Systematic use of the infinite-dimensional spin representation simplifies and
rigorizes several questions in Quantum Field Theory. This representation
permutes ``Gaussian'' elements in the fermion Fock space, and is necessarily
projective: we compute its cocycle at the group level, and obtain Schwinger
terms and anomalies from infinitesimal versions of this cocycle. Quantization,
in this framework, depends on the choice of the ``right'' complex structure on
the space of solutions of the Dirac equation. We show how the spin
representation allows one to compute exactly the S-matrix for fermions in an
external field; the cocycle yields a causality condition needed to determine
the phase.Comment: 32 pages, Plain TeX, UCR-FM-01-9
Rigorous Dynamics and Radiation Theory for a Pauli-Fierz Model in the Ultraviolet Limit
The present paper is devoted to the detailed study of quantization and
evolution of the point limit of the Pauli-Fierz model for a charged oscillator
interacting with the electromagnetic field in dipole approximation. In
particular, a well defined dynamics is constructed for the classical model,
which is subsequently quantized according to the Segal scheme. To this end, the
classical model in the point limit is reformulated as a second order abstract
wave equation, and a consistent quantum evolution is given. This allows a study
of the behaviour of the survival and transition amplitudes for the process of
decay of the excited states of the charged particle, and the emission of
photons in the decay process. In particular, for the survival amplitude the
exact time behaviour is found. This is completely determined by the resonances
of the systems plus a tail term prevailing in the asymptotic, long time regime.
Moreover, the survival amplitude exhibites in a fairly clear way the Lamb shift
correction to the unperturbed frequencies of the oscillator.Comment: Shortened version. To appear in J. Math. Phy
The Anti-Coincidence Detector for the GLAST Large Area Telescope
This paper describes the design, fabrication and testing of the
Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope
(GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against
the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders
of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector,
requiring a total active area of ~8.3 square meters. The ACD detector utilizes
plastic scintillator tiles with wave-length shifting fiber readout. In order to
suppress self-veto by shower particles at high gamma-ray energies, the ACD is
segmented into 89 tiles of different sizes. The overall ACD efficiency for
detection of singly charged relativistic particles entering the tracking
detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field
Ions stored in Penning traps may have useful applications in the field of
quantum information processing. There are, however, difficulties associated
with the laser cooling of one of the radial motions of ions in these traps,
namely the magnetron motion. The application of a small radio-frequency
quadrupolar electric potential resonant with the sum of the two radial motional
frequencies has been shown to couple these motions and to lead to more
efficient laser cooling. We present an analytical model that enables us to
determine laser cooling rates in the presence of such an 'axializing' field. It
is found that this field leads to an averaging of the laser cooling rates for
the two motions and hence improves the overall laser cooling efficiency. The
model also predicts shifts in the motional frequencies due to the axializing
field that are in qualitative agreement with those measured in recent
experiments. It is possible to determine laser cooling rates experimentally by
studying the phase response of the cooled ions to a near resonant excitation
field. Using the model developed in this paper, we study the expected phase
response when an axializing field is present.Comment: 22 pages, 7 figure
- …
