5,204 research outputs found
Recommended from our members
Impact vesiculation – a new trigger for volcanic bubble growth and degassing
We highlight a potentially important trigger for bubble growth and degassing in volcanic bombs. We have successfully triggered bubble growth in previously unvesiculated samples of silicate melt during experiments to simulate volcanic bomb impact, by firing pellets at, and dropping weights onto, melt samples. We call this phenomenon "impact vesiculation". Further work is required on real volcanic bombs to establish the extent to which impact vesiculation occurs in nature. However, our experiments are sufficient to demonstrate that impact vesiculation is a viable processes and should be borne in mind in analysis of bubble populations and degassing histories of bombs and spatter-fed lava flows. Degassing caused by impact vesiculation can occur only at ground-level, so any attempt to calculate the amount of erupted gas available for transport high into the atmosphere by convection above the source of a fountain-fed lava flow that is based on subtracting the volatile content of fluid inclusions from the volatile content of the resulting lava flow would be an overestimate if significant impact vesiculation has occurred
Maximum likelihood estimates of pairwise rearrangement distances
Accurate estimation of evolutionary distances between taxa is important for
many phylogenetic reconstruction methods. In the case of bacteria, distances
can be estimated using a range of different evolutionary models, from single
nucleotide polymorphisms to large-scale genome rearrangements. In the case of
sequence evolution models (such as the Jukes-Cantor model and associated
metric) have been used to correct pairwise distances. Similar correction
methods for genome rearrangement processes are required to improve inference.
Current attempts at correction fall into 3 categories: Empirical computational
studies, Bayesian/MCMC approaches, and combinatorial approaches. Here we
introduce a maximum likelihood estimator for the inversion distance between a
pair of genomes, using the group-theoretic approach to modelling inversions
introduced recently. This MLE functions as a corrected distance: in particular,
we show that because of the way sequences of inversions interact with each
other, it is quite possible for minimal distance and MLE distance to
differently order the distances of two genomes from a third. This has obvious
implications for the use of minimal distance in phylogeny reconstruction. The
work also tackles the above problem allowing free rotation of the genome.
Generally a frame of reference is locked, and all computation made accordingly.
This work incorporates the action of the dihedral group so that distance
estimates are free from any a priori frame of reference.Comment: 21 pages, 7 figures. To appear in the Journal of Theoretical Biolog
Ideas on DC-DC Converters for Delivery of Low Voltage and High Currents for the SLHC / ILC Detector Electronics in Magnetic field and Radiation environments
For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying 48 Volts DC and using local DCDC conversion to 2 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC, and 20 Krads and 6 Tesla at the ILC
Exhaustive generation of -critical -free graphs
We describe an algorithm for generating all -critical -free
graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove
that there are only finitely many -critical -free graphs, for
both and . We also show that there are only finitely many
-critical graphs -free graphs. For each case of these cases we
also give the complete lists of critical graphs and vertex-critical graphs.
These results generalize previous work by Hell and Huang, and yield certifying
algorithms for the -colorability problem in the respective classes.
Moreover, we prove that for every , the class of 4-critical planar
-free graphs is finite. We also determine all 27 4-critical planar
-free graphs.
We also prove that every -free graph of girth at least five is
3-colorable, and determine the smallest 4-chromatic -free graph of
girth five. Moreover, we show that every -free graph of girth at least
six and every -free graph of girth at least seven is 3-colorable. This
strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with
arXiv:1504.0697
Improved Simulation of the Mass Charging for ASTROD I
The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space
Test of Relativity using Optical Devices I) mission can affect the quality of
the science data as a result of spurious Coulomb and Lorentz forces. To
estimate the size of the resultant disturbances, credible predictions of
charging rates and the charging noise are required. Using the GEANT4 software
toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass
charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons
and alpha particles (3He, 4He) in the space environment. A positive charging
rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at
solar maximum. Based on this charging rate and factoring in the contribution of
minor cosmic-ray components, we calculate the acceleration noise and stiffness
associated with charging. We conclude that the acceleration noise arising from
Coulomb and Lorentz effects are well below the ASTROD I acceleration noise
limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier
components due to charging are investigated, it needs to be studied carefully
in order to ensure that these do not compromise the quality of science data in
the ASTROD I mission.Comment: 20 pages, 14 figures, submitted to International Journal of Modern
Physics
Measuring random force noise for LISA aboard the LISA Pathfinder mission
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA
Pathfinder mission, aims to demonstrate drag-free control for LISA test masses
with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper
describes the LTP measurement of random, position independent forces acting on
the test masses. In addition to putting an overall upper limit for all source
of random force noise, LTP will measure the conversion of several key
disturbances into acceleration noise and thus allow a more detailed
characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity
with the proceedings of the 2003 Amaldi Meetin
Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars
The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient lakebed now exhumed and exposed on the Martian surface. The mudstone has four diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised ridges and later diagenetic light-toned veins that crosscut those features. In this study, we describe the distribution and characteristics of the raised ridges, a network of short spindle-shaped cracks that crosscut bedding, do not form polygonal networks, and contain two to four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution within the Sheepbed member and transition laterally into concentrations of nodules and hollow nodules, suggesting that these features formed penecontemporaneously. Because of the erosion-resistant nature of the crack fills, their three-dimensional structure can be observed. Cracks that transition from subvertical to subhorizontal orientations suggest that the cracks formed within the sediment rather than at the surface. This observation and comparison to terrestrial analogs indicate that these are syneresis cracks—cracks that formed subaqueously. Syneresis cracks form by salinity changes that cause sediment contraction, mechanical shaking of sediment, or gas production within the sediment. Examination of diagenetic features within the Sheepbed mudstone favors a gas production mechanism, which has been shown to create a variety of diagenetic morphologies comparable to the raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone remained fluid saturated after deposition and through early burial and lithification
Automatic 3D facial model and texture reconstruction from range scans
This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique
Parallel Mapper
The construction of Mapper has emerged in the last decade as a powerful and
effective topological data analysis tool that approximates and generalizes
other topological summaries, such as the Reeb graph, the contour tree, split,
and joint trees. In this paper, we study the parallel analysis of the
construction of Mapper. We give a provably correct parallel algorithm to
execute Mapper on multiple processors and discuss the performance results that
compare our approach to a reference sequential Mapper implementation. We report
the performance experiments that demonstrate the efficiency of our method
Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history
We have modelled the spectral energy distributions of the 13 Hubble Deep Field (HDF) galaxies reliably detected by the Infrared Space Observatoiy (ISO). For two galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far-infrared luminosity, and derive star formation rates for these galaxies of 8-1000ø M¿ yr-1, where ø takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the Universe. Although uncertainties in the calibration, reliability of source detection, associations and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least
- …
