23,719 research outputs found

    Completely positive maps within the framework of direct-sum decomposition of state space

    Full text link
    We investigate completely positive maps for an open system interacting with its environment. The families of the initial states for which the reduced dynamics can be described by a completely positive map are identified within the framework of direct-sum decomposition of state space. They includes not only separable states with vanishing or nonvanishing quantum discord but also entangled states. A general expression of the families as well as the Kraus operators for the completely positive maps are explicitly given. It significantly extends the previous results.Comment: 7 pages, no figur

    The Quantum Dynamics of Heterotic Vortex Strings

    Full text link
    We study the quantum dynamics of vortex strings in N=1 SQCD with U(N_c) gauge group and N_f=N_c quarks. The classical worldsheet of the string has N=(0,2) supersymmetry, but this is broken by quantum effects. We show how the pattern of supersymmetry breaking and restoration on the worldsheet captures the quantum dynamics of the underlying 4d theory. We also find qualitative matching of the meson spectrum in 4d and the spectrum on the worldsheet.Comment: 13 page

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    Non-adiabatic Arbitary Geometric Gates in 2-qubit NMR Model

    Full text link
    We study a 2-qubit nuclear spin system for realizing an arbitrary geometric quantum phase gate by means of non-adiabatic operation. A single magnetic pulse with multi harmonic frequencies is applied to manipulate the quantum states of 2-qubit instantly. Using resonant transition approximation, the time dependent Hamiltonian of two nuclear spins can be solved analytically. The time evolution of the wave function is obtained without adiabatic approximation. The parameters of magnetic pulse, such as the frequency, amplitude, phase of each harmonic part as well as the time duration of the pulse, are determined for achieving an arbitrary non-adiabatic geometric phase gate. The derivation of non-adiabatic geometric controlled phase gates and A-A phase are also addressed.Comment: 7 pages, 1 figur

    Domain Walls on Singularities

    Full text link
    We describe domain walls that live on A2A_2 and A3A_3 singularities. The walls are BPS if the singularity is resolved and non--BPS if it is deformed and fibered. We show that these domain walls may interpolate between vacua that support monopoles and/or vortices.Comment: 16 pages in phyzzx.te
    corecore