110 research outputs found
Orthogonal Block Structure and Uniformly Best Linear Unbiased Estimators
Models with orthogonal block structure, OBS, have variance covariance
matrices that are linear combinations [...]info:eu-repo/semantics/publishedVersio
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
Growth Endocrine Axis and Bovine Chromosome 5: Association of SNP Genotypes and Reproductive Phenotypes in an Angus, Brahman and Romosinuano Diallele
The growth endocrine axis influences reproduction. A QTL associated with enhanced ovulation exists on chromosome 5 in cattle and there are 6 genes underlying this region involved in the mechanisms of GH action. Resequencing exons, 5’ and 3’ untranslated regions and conserved non-coding regions of these genes in a multibreed resource population revealed 75 SNP usable for genotype to phenotype association studies. In the current study, phenotypes included age at first calving, calving interval, days to calving, and pregnancy rate. Data were collected from developing heifers (n = 650) of a diallele composed of Angus, Brahman, and Romosinuano breeds. A SNP in the promoter of the signal transducer and activator of transcription (STAT)2 gene, which is a second messenger of GH, had minor allele frequency \u3e 10% across the three breeds. This SNP did not deviate from Hardy- Weinberg equilibrium (X2 = 1.00, P \u3e 0.31), so deemed useful for genotype to phenotype association analyses. Since the remaining SNP appeared to predict breed, they were used to correct for population stratification using STRUCTURE, which revealed three distinctive ancestral clusters. No significant association was detected between the STAT2 genotype and reproductive traits in mixed effects analyses using genotype as a fixed term, sire as a random term, and coefficient of ancestry as a covariate; however, the interaction of SNP genotype and ancestral cluster was associated with the traits days to calving (P \u3c 0.05) and calving interval (P \u3c 0.10). Interaction plots revealed a higher estimated effect of heterozygous genotype in cluster 1 (inferred primarily from Brahman) and lower estimates in clusters 2 and 3 (inferred primarily from Bos taurus). The heterozygous genotype extended these trait levels ~100 d. A SNP in the promoter of the STAT2 gene was associated with fertility trait levels in admixed cows of the breeds Angus, Brahman, and Romosinuano. The effect appeared to be a non-additive genetic relationship as heterozygous genotype extended levels of traits indicative of postpartum rebreeding
Paratuberculosis sero-status and milk production, SCC and calving interval in Irish dairy herds
The objective of this study was to investigate the impact of paratuberculosis sero-status on milk yield, fat, protein, somatic cell count and calving interval in Irish dairy herds. Serum from all animals over 12 months of age (n = 2,602) in 34 dairy herds was tested for antibodies to Mycobacterium avium subsp. paratuberculosis using an ELISA. Herds were categorised by sero-status into positive, non-negative and negative, where a positive herd contained two or more positive cows, a non-negative herd contained only one positive cow and a negative herd contained no positive cows. Data at animal, parity and herd-level were analysed by multiple regression using general linear models. Positive herds (mean herd size = 129 cows) and non-negative herds (81 cows) were larger than negative herds (72 cows) (P < 0.01). Negative herds had the highest economic breeding index (EBI), while positive herds had the highest estimated breeding value (EBV) for milk yield. There was no significant effect of paratuberculosis sero-status at animal, parity or herd-level on milk yield, milk fat or protein production, somatic cell count score (SCCS) or calving interval. Negative herds tended to have a lower SCCS than positive and nonnegative herds (P = 0.087). This study only examined the effects of paratuberculosis sero-status but did not examine the clinical effects of Johne's disease at the farm or dairy industry levels
Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina
Melanocortin Receptor 4 Deficiency Affects Body Weight Regulation, Grooming Behavior, and Substrate Preference in the Rat
Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis–induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein79–129 (AgRP79–129), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homozygous mutant rats, confirming complete loss of MC4R function in vivo. Finally, ICV administration of MTII induced excessive grooming behavior in wild-type rats, whereas this effect was absent in homozygous mutant rats, indicating that MTII-induced grooming behavior is exclusively regulated via MC4R pathways. Taken together, we expect that the MC4R rat model described here will be a valuable tool for studying monogenic obesity in humans. More specifically, the relative big size and increased cognitive capacity of rats as compared to mice will facilitate complex behavioral studies and detailed mechanistic studies regarding central function of MC4R, both of which ultimately may help to further understand the specific mechanisms that induce obesity during loss of MC4R function
A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that
underlies lateral inhibition and establishes the antagonistic center-surround
organization of the visual system. Cones transmit to HCs through an excitatory
synapse and HCs feed back to cones through an inhibitory synapse. Here we report
that HCs also transmit to cone terminals a positive feedback signal that
elevates intracellular Ca2+ and accelerates neurotransmitter
release. Positive and negative feedback are both initiated by AMPA receptors on
HCs, but positive feedback appears to be mediated by a change in HC
Ca2+, whereas negative feedback is mediated by a change in
HC membrane potential. Local uncaging of AMPA receptor agonists suggests that
positive feedback is spatially constrained to active HC-cone synapses, whereas
the negative feedback signal spreads through HCs to affect release from
surrounding cones. By locally offsetting the effects of negative feedback,
positive feedback may amplify photoreceptor synaptic release without sacrificing
HC-mediated contrast enhancement
Systematic generation of in vivo G protein-coupled receptor mutants in the rat
G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies
Gaia Data Release 1: Open cluster astrometry: performance, limitations, and future prospects
Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information.Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs
Year‐round Irrigation and Fall Dormancy Affects Alfalfa Yield in a Semiarid, Subtropical Environment
- …
