135,508 research outputs found
Segmentation ART: A Neural Network for Word Recognition from Continuous Speech
The Segmentation ATIT (Adaptive Resonance Theory) network for word recognition from a continuous speech stream is introduced. An input sequeuce represents phonemes detected at a preproccesing stage. Segmentation ATIT is trained rapidly, and uses a fast-learning fuzzy ART modules, top-down expectation, and a spatial representation of temporal order. The network performs on-line identification of word boundaries, correcting an initial hypothesis if subsequent phonemes are incompatible with a previous partition. Simulations show that the system's segmentation perfonnance is comparable to that of TRACE, and the ability to segment a number of difficult phrases is also demonstrated.National Science Foundation (NSF-IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0G57
Quality of Service for Information Access
Information is available in many forms from different sources, in distributed locations; access to information is supported by networks of varying performance; the cost of accessing and transporting the information varies for both the source and the transport route. Users who vary in their preferences, background knowledge required to interpret the information and motivation for accessing it, gather information to perform many different tasks. This position paper outlines some of these variations in information provision and access, and explores the impact these variations have on the user’s task performance, and the possibilities they make available to adapt the user interface for the presentation of information
Pushing the precision limit of ground-based eclipse photometry
Until recently, it was considered by many that ground-based photometry could
not reach the high cadence sub-mmag regime because of the presence of the
atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation)
limit the precision that high SNR photometry can reach within small time bins.
If one is ready to damage the sampling of his photometric time-series, binning
the data (or using longer exposures) allows to get better errors, but the
obtained precision will be finally limited by low frequency noises. To observe
several times the same planetary eclipse and to fold the photometry with the
orbital period is thus generally considered as the only option to get very well
sampled and precise eclipse light curve from the ground. Nevertheless, we show
here that reaching the sub-mmag sub-min regime for one eclipse is possible with
a ground-based instrument. This has important implications for transiting
planets characterization, secondary eclipses measurement and small planets
detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4
figure
On the Use of Group Theoretical and Graphical Techniques toward the Solution of the General N-body Problem
Group theoretic and graphical techniques are used to derive the N-body wave
function for a system of identical bosons with general interactions through
first-order in a perturbation approach. This method is based on the maximal
symmetry present at lowest order in a perturbation series in inverse spatial
dimensions. The symmetric structure at lowest order has a point group
isomorphic with the S_N group, the symmetric group of N particles, and the
resulting perturbation expansion of the Hamiltonian is order-by-order invariant
under the permutations of the S_N group. This invariance under S_N imposes
severe symmetry requirements on the tensor blocks needed at each order in the
perturbation series. We show here that these blocks can be decomposed into a
basis of binary tensors invariant under S_N. This basis is small (25 terms at
first order in the wave function), independent of N, and is derived using
graphical techniques. This checks the N^6 scaling of these terms at first order
by effectively separating the N scaling problem away from the rest of the
physics. The transformation of each binary tensor to the final normal
coordinate basis requires the derivation of Clebsch-Gordon coefficients of S_N
for arbitrary N. This has been accomplished using the group theory of the
symmetric group. This achievement results in an analytic solution for the wave
function, exact through first order, that scales as N^0, effectively
circumventing intensive numerical work. This solution can be systematically
improved with further analytic work by going to yet higher orders in the
perturbation series.Comment: This paper was submitted to the Journal of Mathematical physics, and
is under revie
Decay channels and charmonium mass-shifts
The discovery in the last few years of the and states of the
extended charmonium family has highlighted the importance of the closeness of
decay channels to an understanding of these mesons. We aid this debate by
illustrating a simple calculational procedure for including the effect of open
and nearby closed channels.Comment: 4 pages, 2 figures Revised version: (1) corrected 2 typos in Table
II, (2) additional text in penultimate paragraph to clarify the calculation
of mass-shifts for and . We thank colleagues for pointing
out confusing wording of previous tex
Studies of high latitude current systems using MAGSAT vector data
The magnetic disturbance fields caused by global external current systems are considered with particular emphasis on improving the understanding of the physical processes which control high latitude current systems. Following processing the MAGSAT data were routinely plotted in the Universal Time (UT) format as well as in a polar plot format. The H'D'U' coordinate system, was adopted as the standard for representing the MAGSAT residual magnetic field vectors. A data file was generated and the TPOLAR computer code was developed to determine from the orbital elements, the time, latitude, and MLT of the extremum latitude of each transpolar segment of orbit. The precision of the vector data set from MAGSAT prompted an extended exploratory phase for data analysis procedures, modeling techniques and phenomenology
- …
