2,485 research outputs found
Space shuttle orbit maneuvering engine reusable thrust chamber program
Tests were conducted on the regenerative cooled thrust chamber of the space shuttle orbit maneuvering engine. The conditions for the tests and the durations obtained are presented. The tests demonstrated thrust chamber operation over the nominal ranges of chamber pressure mixture ratio. Variations in auxiliary film coolant flowrate were also demonstrated. High pressure tests were conducted to demonstrate the thrust chamber operation at conditions approaching the design chamber pressure for the derivative space tug application
A Late-Time Flattening of Afterglow Light Curves
We present a sample of radio afterglow light curves with measured decay
slopes which show evidence for a flattening at late times compared to optical
and X-ray decay indices. The simplest origin for this behavior is that the
change in slope is due to a jet-like outflow making a transition to
sub-relativistic expansion. This can explain the late-time radio light curves
for many but not all of the bursts in the sample. We investigate several
possible modifications to the standard fireball model which can flatten
late-time light curves. Changes to the shock microphysics which govern particle
acceleration, or energy injection to the shock (either radially or azimuthally)
can reproduce the observed behavior. Distinguishing between these different
possibilities will require simultaneous optical/radio monitoring of afterglows
at late times.Comment: ApJ, submitte
XUV Frequency Combs via Femtosecond Enhancement Cavities
We review the current state of tabletop extreme ultraviolet (XUV) sources
based on high harmonic generation (HHG) in femtosecond enhancement cavities
(fsEC). Recent developments have enabled generation of high photon flux (1014
photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the
spectral region from 40 nm - 120 nm. This level of performance has enabled
precision spectroscopy with XUV frequency combs and promises further
applications in XUV spectroscopic and photoemission studies. We discuss the
theory of operation and experimental details of the fsEC and XUV generation
based on HHG, including current technical challenges to increasing the photon
flux and maximum photon energy produced by this type of system. Current and
future applications for these sources are also discussed.Comment: invited review article, 38 page
Discovery of Early Optical Emission from GRB 021211
We report our discovery and early time optical, near-infrared, and radio
wavelength follow-up observations of the afterglow of the gamma-ray burst GRB
021211. Our optical observations, beginning 21 min after the burst trigger,
demonstrate that the early afterglow of this burst is roughly three magnitudes
fainter than the afterglow of GRB 990123 at similar epochs, and fainter than
almost all known afterglows at an epoch of 1d after the GRB. Our near-infrared
and optical observations indicate that this is not due to extinction. Combining
our observations with data reported by other groups, we identify the signature
of a reverse shock. This reverse shock is not detected to a 3-sigma limit of
110 uJy in an 8.46-GHz VLA observation at t=0.10d, implying either that the
Lorentz factor of the burst gamma <~ 200, or that synchrotron self-absorption
effects dominate the radio emission at this time. Our early optical
observations, near the peak of the optical afterglow (forward shock), allow us
to characterize the afterglow in detail. Comparing our model to flux upper
limits from the VLA at later times, t >~ 1 week, we find that the late-time
radio flux is suppressed by a factor of two relative to the >~ 80 uJy peak flux
at optical wavelengths. This suppression is not likely to be due to synchrotron
self-absorption or an early jet break, and we suggest instead that the burst
may have suffered substantial radiative corrections.Comment: 13 pages, 2 figures, ApJL accepted; edits for lengt
Prompt Optical Detection of GRB 050401 with ROTSE-IIIa
The ROTSE-IIIa telescope at Siding Spring Observatory, Australia, detected
prompt optical emission from Swift GRB 050401. In this letter, we present
observations of the early optical afterglow, first detected by the ROTSE-IIIa
telescope 33 s after the start of gamma-ray emission, contemporaneous with the
brightest peak of this emission. This GRB was neither exceptionally long nor
bright. This is the first prompt optical detection of a GRB of typical duration
and luminosity. We find that the early afterglow decay does not deviate
significantly from the power-law decay observable at later times, and is
uncorrelated with the prompt gamma-ray emission. We compare this detection with
the other two GRBs with prompt observations, GRB 990123 and GRB 041219a. All
three bursts exhibit quite different behavior at early times.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letter
Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains
In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level discrimination performance and (2) lower tone-in-noise detection thresholds using a modulated masker compared to those using an unmodulated masker. In the current study, translations of these two experiments were carried out to test the hypothesis that analogous cues might be used in the envelope-frequency domain. Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were found to be similar using both traditional gated stimuli and using a temporally modulated fringe for a fixed standard depth (m(s)=0.25) and a range of AM frequencies (4-64 Hz). In a second experiment, masked sinusoidal AM detection thresholds were compared in conditions with and without slow and regular fluctuations imposed on the instantaneous masker AM depth. Release from masking was obtained only for very slow masker fluctuations (less than 2 Hz). A physiologically motivated model that effectively acts as a first-order envelope change detector accounted for several, but not all, of the key aspects of the data
The Dark Side of ROTSE-III Prompt GRB Observations
We present several cases of optical observations during gamma-ray bursts
(GRBs) which resulted in prompt limits but no detection of optical emission.
These limits constrain the prompt optical flux densities and the optical
brightness relative to the gamma-ray emission. The derived constraints fall
within the range of properties observed in GRBs with prompt optical detections,
though at the faint end of optical/gamma flux ratios. The presently accessible
prompt optical limits do not require a different set of intrinsic or
environmental GRB properties, relative to the events with prompt optical
detections.Comment: ApJ accepted. 20 pages in draft manuscript form, which includes 6
pages of tables and 2 figure
Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows
We report on a complete set of early optical afterglows of gamma-ray bursts
(GRBs) obtained with the ROTSE-III telescope network from March 2005 through
June 2007. This set is comprised of 12 afterglows with early optical and
Swift/XRT observations, with a median ROTSE-III response time of 45 s after the
start of gamma-ray emission (8 s after the GCN notice time). These afterglows
span four orders of magnitude in optical luminosity, and the contemporaneous
X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray
flares, the broadband synchrotron spectra show that the optical and X-ray
emission originate in a common region, consistent with predictions of the
external forward shock in the fireball model. However, the fireball model is
inadequate to predict the temporal decay indices of the early afterglows, even
after accounting for possible long-duration continuous energy injection. We
find that the optical afterglow is a clean tracer of the forward shock, and we
use the peak time of the forward shock to estimate the initial bulk Lorentz
factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with
expectations.Comment: 31 pages, 5 figures, submitted to Ap
Cosmological Uses of Gamma-Ray Bursts
Studies of the cosmic gamma-ray bursts (GRBs) and their host galaxies are
starting to provide interesting or even unique new insights in observational
cosmology. GRBs represent a new way of identifying a population of star-forming
galaxies at cosmological redshifts. GRB hosts are broadly similar to the normal
field galaxy populations at comparable redshifts and magnitudes, and indicate
at most a mild luminosity evolution out to z ~ 1.5 - 2. GRB optical afterglows
seen in absorption provide a powerful new probe of the ISM in dense, central
regions of their host galaxies, complementary to the traditional studies using
QSO absorbers. Some GRB hosts are heavily obscured, and provide a new way to
select a population of cosmological sub-mm sources, and a novel constraint on
the total obscured fraction of star formation over the history of the universe.
Finally, detection of GRB afterglows at z > 6 may provide a unique way to probe
the primordial star formation, massive IMF, early IGM, and chemical enrichment
at the end of the cosmic reionization era.Comment: An invited review, to appear in: "Gamma-Ray Bursts in the Afterglow
Era: 3rd Workshop", ASPCS, in press; LaTeX file, 8 pages, 1 eps figure, style
files include
The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425
Over the six years since the discovery of the gamma-ray burst GRB 980425,
associated with the nearby (distance, ~40 Mpc) supernova 1998bw, astronomers
have fiercely debated the nature of this event. Relative to bursts located at
cosmological distances, (redshift, z~1), GRB 980425 was under-luminous in
gamma-rays by three orders of magnitude. Radio calorimetry showed the explosion
was sub-energetic by a factor of 10. Here, we report observations of the radio
and X-ray afterglow of the recent z=0.105 GRB 031203 and demonstrate that it
too is sub-energetic. Our result, when taken together with the low gamma-ray
luminosity, suggest that GRB 031203 is the first cosmic analogue to GRB 980425.
We find no evidence that this event was a highly collimated explosion viewed
off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically
sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows.
Intensive follow-up of faint bursts with smooth gamma-ray light curves (common
to both GRBs 031203 and 980425) may enable us to reveal their expected large
population.Comment: To Appear in Nature, August 5, 200
- …
