1,062 research outputs found

    Solidification mechanism of highly undercooled metal alloys

    Get PDF
    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation

    Aging in a Two-Dimensional Ising Model with Dipolar Interactions

    Full text link
    Aging in a two-dimensional Ising spin model with both ferromagnetic exchange and antiferromagnetic dipolar interactions is established and investigated via Monte Carlo simulations. The behaviour of the autocorrelation function C(t,tw)C(t,t_w) is analyzed for different values of the temperature, the waiting time twt_w and the quotient δ=J0/Jd\delta=J_0/J_d, J0J_0 and JdJ_d being the strength of exchange and dipolar interactions respectively. Different behaviours are encountered for C(t,tw)C(t,t_w) at low temperatures as δ\delta is varied. Our results show that, depending on the value of δ\delta, the dynamics of this non-disordered model is consistent either with a slow domain dynamics characteristic of ferromagnets or with an activated scenario, like that proposed for spin glasses.Comment: 4 pages, RevTex, 5 postscript figures; acknowledgment added and some grammatical corrections in caption

    Assemblage structure: an overlooked component of human-mediated species movements among freshwater ecosystems

    Get PDF
    The spread and impact of alien species among freshwater ecosystems has increased with global trade and human movement; therefore, quantifying the role of anthropogenic and ecological factors that increase the risk of invasion is an important conservation goal. Two factors considered as null models when assessing the potential for invasion are colonization pressure (i.e., the number of species introduced) and propagule pressure [i.e., the number (propagule size), and frequency (propagule number), of individuals of each species introduced]. We translate the terminology of species abundance distributions to the invasion terminology of propagule size and colonization size (PS and CS, respectively). We conduct hypothesis testing to determine the underlying statistical species abundance distribution for zooplankton assemblages transported between freshwater ecosystems; and, on the basis of a lognormal distribution, construct four hypothetical assemblages spanning assemblage structure, rank-abundance gradient (e.g., even vs uneven), total abundance (of all species combined), and relative contribution of PS vs CS. For a given CS, many combinations of PS and total abundance can occur when transported assemblages conform to a lognormal species abundance distribution; therefore, for a given transportation event, many combinations of CS and PS are possible with potentially different ecological outcomes. An assemblage exhibiting high PS but low CS (species poor, but highly abundant) may overcome demographic barriers to establishment, but with lower certainty of amenable environmental conditions in the recipient region; whereas, the opposite extreme, high CS and low PS (species rich, but low abundance per species) may provide multiple opportunities for one of n arriving species to circumvent environmental barriers, albeit with lower potential to overcome demographic constraints. Species abundance distributions and the corresponding influence of CS and PS are some of many influential factors (e.g., demographic and genetic stochasticity, environmental variability, composition of recipient ecosystems) that will help refine an understanding of establishment risk following the human-mediated movement of species

    Metric Features of a Dipolar Model

    Full text link
    The lattice spin model, with nearest neighbor ferromagnetic exchange and long range dipolar interaction, is studied by the method of time series for observables based on cluster configurations and associated partitions, such as Shannon entropy, Hamming and Rohlin distances. Previous results based on the two peaks shape of the specific heat, suggested the existence of two possible transitions. By the analysis of the Shannon entropy we are able to prove that the first one is a true phase transition corresponding to a particular melting process of oriented domains, where colored noise is present almost independently of true fractality. The second one is not a real transition and it may be ascribed to a smooth balancing between two geometrical effects: a progressive fragmentation of the big clusters (possibly creating fractals), and the slow onset of a small clusters chaotic phase. Comparison with the nearest neighbor Ising ferromagnetic system points out a substantial difference in the cluster geometrical properties of the two models and in their critical behavior.Comment: 20 pages, 15 figures, submitted to JPhys

    Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films

    Full text link
    The temperature-driven reorientation transition which, up to now, has been studied by use of Heisenberg-type models only, is investigated within an itinerant-electron model. We consider the Hubbard model for a thin fcc(100) film together with the dipole interaction and a layer-dependent anisotropy field. The isotropic part of the model is treated by use of a generalization of the spectral-density approach to the film geometry. The magnetic properties of the film are investigated as a function of temperature and film thickness and are analyzed in detail with help of the spin- and layer-dependent quasiparticle density of states. By calculating the temperature dependence of the second-order anisotropy constants we find that both types of reorientation transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to out-of-plane (``Ni-type'') magnetization are possible within our model. In the latter case the inclusion of a positive volume anisotropy is vital. The reorientation transition is mediated by a strong reduction of the surface magnetization with respect to the inner layers as a function of temperature and is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres

    Dipolar interaction between two-dimensional magnetic particles

    Full text link
    We determine the effective dipolar interaction between single domain two-dimensional ferromagnetic particles (islands or dots), taking into account their finite size. The first correction term decays as 1/D^5, where D is the distance between particles. If the particles are arranged in a regular two-dimensional array and are magnetized in plane, we show that the correction term reinforces the antiferromagnetic character of the ground state in a square lattice, and the ferromagnetic one in a triangular lattice. We also determine the dipolar spin-wave spectrum and evaluate how the Curie temperature of an ensemble of magnetic particles scales with the parameters defining the particle array: height and size of each particle, and interparticle distance. Our results show that dipolar coupling between particles might induce ferromagnetic long range order at experimentally relevant temperatures. However, depending on the size of the particles, such a collective phenomenon may be disguised by superparamagnetism.Comment: 11 pages, 5 figure

    Reorientation transition of ultrathin ferromagnetic films

    Full text link
    We demonstrate that the reorientation transition from out-of-plane to in-plane magnetization with decreasing temperature as observed experimentally in Ni-films on Cu(001) can be explained on a microscopic basis. Using a combination of mean field theory and perturbation theory, we derive an analytic expression for the temperature dependent anisotropy. The reduced magnetization in the film surface at finite temperatures plays a crucial role for this transition as with increasing temperature the influence of the uniaxial anisotropies is reduced at the surface and is enhanced inside the film.Comment: 4 pages(RevTeX), 3 figures (EPS

    Phase diagram of an Ising model with long-range frustrating interactions: a theoretical analysis

    Full text link
    We present a theoretical study of the phase diagram of a frustrated Ising model with nearest-neighbor ferromagnetic interactions and long-range (Coulombic) antiferromagnetic interactions. For nonzero frustration, long-range ferromagnetic order is forbidden, and the ground-state of the system consists of phases characterized by periodically modulated structures. At finite temperatures, the phase diagram is calculated within the mean-field approximation. Below the transition line that separates the disordered and the ordered phases, the frustration-temperature phase diagram displays an infinite number of ``flowers'', each flower being made by an infinite number of modulated phases generated by structure combination branching processes. The specificities introduced by the long-range nature of the frustrating interaction and the limitation of the mean-field approach are finally discussed.Comment: 32 pages, 7 figure
    corecore