7 research outputs found
Autocrine Sonic hedgehog signaling promotes gastric cancer proliferation through induction of phospholipase Cγ1 and the ERK1/2 pathway
Cooperation between Shh and IGF-I in promoting myogenic proliferation and differentiation via the MAPK/ERK and PI3K/Akt pathways requires smo activity
Sonic Hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and insulin-like growth factor I (IGF-I) was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh's effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smomut (MCre;Smoflox/flox) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I's effect on Smocont cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smomut cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that tyrosine-phosphorylated proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts. J. Cell. Physiol. 227: 1455-1464, 2012. (C) 2011 Wiley Periodicals, Inc
Cooperation between Shh and IGF-I in promoting myogenic proliferation and differentiation via the MAPK/ERK and PI3K/Akt pathways requires smo activity
Sonic hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and IGF-I was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh’s effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smo(mut) (MCre;Smo(flox/flox)) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I’s effect on Smo(cont) cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smo(mut) cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that p-Tyr proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts
Interaction between IGF-IR and ER Induced by E2 and IGF-I
Estrogen receptor (ER) is a nuclear receptor and the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) is a transmembrane tyrosine kinase receptor. Estrogen and IGF-I are known to have synergistic effects on the growth of breast cancer cells. Recently, non-nuclear effects of ER have been under investigation. To study the mechanism involved in this process, we have used MCF-7 breast cancer cell lines transfected with IGF-IR anti-sense cDNA (SX13, MCF-7(SX13)) that resulted in 50% reduction of IGF-IR. In MCF-7 cells, estradiol (E2) and IGF-I induced the rapid association of ER to IGF-IR, however, the interaction was abrogated in MCF-7(SX13) cells. In addition, NWTB3 cells (NIH3T3 cells overexpressing IGF-IR) were transiently transfected with ERα, the ER-IGF-IR interaction was induced by both E2 and IGF-I. Moreover, ERα regulated the IGF-I signaling pathways through phosphorylation of ERK1/2 and Akt and the interaction of ER-IGF-IR potentiated the cell growth. Finally, E2 and IGF-I stimulated translocation of ER from the nucleus to the cytoplasm. Taken together, these findings reveal that the interaction of the ER and IGF-IR is important for the non-genomic effects of ER
SMO Expression in Colorectal Cancer: Associations with Clinical, Pathological, and Molecular Features
BACKGROUND: SMO (the official symbol for “smoothened, frizzled family receptor”) is an important component of the hedgehog signaling pathway, which has been implicated in various human carcinomas. However, clinical, molecular, and prognostic associations of SMO expression in colorectal cancer remain unclear. METHODS: Using a database of 735 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study, we examined the relationship of tumor SMO expression (assessed by immunohistochemistry) to prognosis, and to clinical, pathological and tumor molecular features, including mutations of KRAS, BRAF and PIK3CA, microsatellite instability, CpG island methylator phenotype (CIMP), LINE-1 methylation, and expression of phosphorylated AKT and CTNNB1. RESULTS: SMO expression was detected in 370 (50%) tumors. In multivariate logistic regression analysis, SMO expression was independently inversely associated with phosphorylated AKT expression [odds ratio (OR), 0.48; 95% confidence interval (CI), 0.34–0.67] and CTNNB1 nuclear localization (OR, 0.48; 95% CI, 0.35–0.67). SMO expression was not significantly associated with colorectal cancer-specific or overall survival. However, in CIMP-high tumors, but not CIMP-low/0 tumors, SMO expression was significantly associated with better colorectal cancer-specific survival (log-rank P = 0.012; multivariate hazard ratio, 0.36; 95% CI, 0.13–0.95; P(interaction) = 0.035, for SMO and CIMP status). CONCLUSIONS: Our data reveal novel potential associations between the hedgehog, the WNT/CTNNB1, and the PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase)/AKT pathways, supporting pivotal roles of SMO and hedgehog signaling in pathway networking. SMO expression in colorectal cancer may interact with tumor CIMP status to affect patient prognosis, although confirmation by future studies is needed
