15,929 research outputs found
Compact Toroidal Ion Trap Design and Optimization
We present the design of a new type of compact toroidal, or "halo", ion trap.
Such traps may be useful for mass spectrometry, studying small Coulomb cluster
rings, quantum information applications, or other quantum simulations where a
ring topology is of interest. We present results from a Monte Carlo
optimization of the trap design parameters using finite-element analysis
simulations that minimizes higher-order anharmonic terms in the trapping
pseudopotential, while maintaining complete control over ion placement at the
pseudopotential node in 3D using static bias fields. These simulations are
based on a practical electrode design using readily-available parts, yet can be
easily scaled to any size trap with similar electrode spacings. We also derive
the conditions for a crystal phase transition for two ions in the compact halo
trap, the first non-trivial phase transition for Coulomb crystals in this
geometry.Comment: 8 pages, 9 figure
A review of applied methods in Europe for flood-frequency analysis in a changing environment
The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report
concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines.
Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is
some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on
alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may
depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate
Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume
Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2× 10-2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example
Vegetative Spread of Dioecious Hydrilla Colonies in Experimental Ponds
Stolon formation and fragmentation are two vegetative mechanisms by which hydrilla colonies expand. These two mechanisms of spread were studied in ponds located in Lewisville, TX over a two-year period. Stolons were determined to be the predominant mechanism for localized expansion in undisturbed areas. While some fragments were produced, they accounted for only 0.1% of the establishment of rooted plants in new quadrats. Peak production of fragments occurred in October and November, with fragment densities of 0.15 N m-2 d-1. Expansion by stolons occurred between June and November of each year, with higher rates of spread (up to 4.0 cm d-1 radial growth) observed in the second season
Genetic Improvement of Livestock for Organic Farming Systems
Organic farming which experienced a constant rise over the last two decades is a system based on sustainability and on a concept tending towards functional integrity. Legislation as well as the wish to produce separately from conventional farming raise the question whether organic farming should be conducted completely apart from conventional farming or not. This paper discusses the aspects that affect animal breeding under these circumstances, e.g., maintaining genetic diversity by using local breeds and possible G×E interactions which might occur when breeds adapted to conventional farming systems are used in organic farming. Ways of modelling G×E are presented, moreover examples of G×E in dairy cattle, swine, and poultry are given. Trends in selection index theory–designing multi-trait breeding goals including functional traits on one hand, and developing methods for using customised selection indices on the other hand–support breeding work for organic farming systems. It is concluded that before the technical issues can be addressed, all parties involved, farmers, consumers as well as legislators, have to agree on the socio-cultural conditions under which organic farming should be conducted
Seasonal Biomass and Carbohydrate Allocation Patterns in Southern Minnesota Curlyleaf Pondweed Populations
Four southern Minnesota populations of curlyleaf pondweed
(
Potamogeton crispus
L.) were sampled monthly from
January 2001 to November 2002 to determine seasonal phenological,
biomass, and carbohydrate allocation patterns.
Low periods of carbohydrate storage in the seasonal phenological
cycle indicate potentially vulnerable periods in the
plant’s life cycle and may be the ideal time to initiate management
and control efforts
Bayesian analysis of the linear reaction norm model with unknown covariate
The reaction norm model is becoming a popular approach for the analysis of G x E interactions. In a classical reaction norm model, the expression of a genotype in different environments is described as a linear function (a reaction norm) of an environmental gradient or value. A common environmental value is defined as the mean performance of all genotypes in the environment, which is typically unknown. One approximation is to estimate the mean phenotypic performance in each environment, and then treat these estimates as known covariates in the model. However, a more satisfactory alternative is to infer environmental values simultaneously with the other parameters of the model. This study describes a method and its Bayesian MCMC implementation that makes this possible. Frequentist properties of the proposed method are tested in a simulation study. Estimates of parameters of interest agree well with the true values. Further, inferences about genetic parameters from the proposed method are similar to those derived from a reaction norm model using true environmental values. On the other hand, using phenotypic means as proxies for environmental values results in poor inferences
Recommended from our members
Evaluating the Diversity of Emergency Medicine Foundation (EMF) Grant Recipients in the Last Decade
On behalf of the ACEP Research CommitteeIntroduction: To study diversity of researchers and barriers to success among Emergency Medicine Foundation (EMF) grant recipients in the last 10 years.Methods: EMF grant awardees were approached to complete a brief survey, which included demographics, queries related to contributions to the literature, success in obtaining grants, and any perceived barriers they encountered.Results: Of the 342 researchers contacted by email, a total of 147 completed the survey for a response rate of 43%. The respondents were predominately mid to late career white-male-heterosexual-Christian with an average age of 44 years (range 25-69 years of age). With regards to training and education, the majority of respondents (50%) were either Associate or Professor clinical rank (8% instructor/resident/fellow and 31% Assistant). Sixty-two percent of the respondents reported perceived barriers to career advancement since completion of residency. The largest perceived barrier to success was medical specialty (26%), followed by gender (21%) and age (16%).Conclusion: Our survey of EMF grant recipients in the last 10 years shows a considerable lack of diversity. The most commonly perceived barriers to career advancement by this cohort were medical specialty, gender, and age. An opportunity exists for further definition of barriers and development of mechanisms to overcome them, with a goal of increased success for those that are underrepresented.
- …
