1,214 research outputs found

    Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    Full text link
    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred

    Phase shifts of synchronized oscillators and the systolic/diastolic blood pressure relation

    Get PDF
    We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the Very Low Frequency band to the High Frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.Comment: 8 figures, 9 page

    Inequalities' Impacts: State of the Art Review

    Get PDF
    By way of introduction This report provides the fi rm foundation for anchoring the research that will be performed by the GINI project. It subsequently considers the fi elds covered by each of the main work packages: ● inequalities of income, wealth and education, ● social impacts, ● political and cultural impacts, and ● policy effects on and of inequality. Though extensive this review does not pretend to be exhaustive. The review may be “light” in some respects and can be expanded when the analysis evolves. In each of the four fi elds a signifi cant number of discussion papers will be produced, in total well over 100. These will add to the state of the art while also covering new round and generating results that will be incorporated in the Analysis Reports to be prepared for the work packages. In that sense, the current review provides the starting point. At the same time, the existing body of knowledge is broader or deeper depending on the particular fi eld and its tradition of research. The very motivation of GINI’s focused study of the impacts of inequalities is that a systematic study is lacking and relatively little is known about those impacts. This also holds for the complex collection of, the effects that inequality can have on policy making and the contributions that policies can make to mitigating inequalities but also to enhancing them. By contrast, analyses of inequality itself are many, not least because there is a wide array of inequalities; inequalities have become more easily studied comparatively and much of that analysis has a signifi cant descriptive fl avour that includes an extensive discussion of measurement issues. @GINI hopes to go beyond that and cover the impacts of inequalities at the same time

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles

    Toxic Chemical and their Neutralising Agents in Porous Media

    Get PDF
    The UK Government Decontamination Service advises central Govern- ment on the national capability for the decontamination of buildings, infrastructure, transport and open environment, and be a source of expertise in the event of a chemical, biological, radiological and nuclear (CBRN) incident or major release of HazMat materials. The study group constructed mathematical models to describe the depth to which a toxic chemical may seep into an initially dry porous substrate, and of the neutralisation process between a decontaminant and the imbibed chemical. The group recognised that capillary suction was the dominant process by which the contaminant spreads in the porous substrate. Therefore, in the first instance the absorption of the contaminant was modelled using Darcy’s law. At the next level of complication a diffuse interface model based on Richards’ equation was employed. The results of the two models were found to agree at early times, while at later times we found that the diffuse interface model predicted the more realistic scenario in which the contaminant has seeped deeper into the substrate even in the absence of further contaminant being supplied at the surface. The decontamination process was modelled in two cases; first, where the product of the decontamination reaction was water soluble, and the second where the reaction product formed soluble in the contaminant phase and of similar density. These simple models helped explain some of the key physics involved in the process, and how the decontamination process might be optimised. We found that decontamination was most effective in the first of these two cases. The group then sought to incorporate hydrodynamic effects into the reaction model. In the long wavelength limit, the governing equations reduced to a one-dimensional Stefan model similar to the one considered earlier. More detailed approximations and numerical simulations of this model were beyond the scope of this study group, but provide an entry point for future research in this area

    The sound of emotional prosody: Nearly 3 decades of research and future directions

    Get PDF
    Emotional voices attract considerable attention. A search on any browser using “emotional prosody” as a key phrase leads to more than a million entries. Such interest is evident in the scientific literature as well; readers are reminded in the introductory paragraphs of countless articles of the great importance of prosody and that listeners easily infer the emotional state of speakers through acoustic information. However, despite decades of research on this topic and important achievements, the mapping between acoustics and emotional states is still unclear. In this article, we chart the rich literature on emotional prosody for both newcomers to the field and researchers seeking updates. We also summarize problems revealed by a sample of the literature of the last decades and propose concrete research directions for addressing them, ultimately to satisfy the need for more mechanistic knowledge of emotional prosody

    Perceptual (but not acoustic) features predict singing voice preferences

    Get PDF
    Why do we prefer some singers to others? We investigated how much singing voice preferences can be traced back to objective features of the stimuli. To do so, we asked participants to rate short excerpts of singing performances in terms of how much they liked them as well as in terms of 10 perceptual attributes (e.g.: pitch accuracy, tempo, breathiness). We modeled liking ratings based on these perceptual ratings, as well as based on acoustic features and low-level features derived from Music Information Retrieval (MIR). Mean liking ratings for each stimulus were highly correlated between Experiments 1 (online, US-based participants) and 2 (in the lab, German participants), suggesting a role for attributes of the stimuli in grounding average preferences. We show that acoustic and MIR features barely explain any variance in liking ratings; in contrast, perceptual features of the voices achieved around 43% of prediction. Inter-rater agreement in liking and perceptual ratings was low, indicating substantial (and unsurprising) individual differences in participants’ preferences and perception of the stimuli. Our results indicate that singing voice preferences are not grounded in acoustic attributes of the voices per se, but in how these features are perceptually interpreted by listeners
    corecore