825 research outputs found
Controlling internal barrier in low loss BaTiO3 supercapacitors
Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite
Polaron relaxation in ferroelectric thin films
We report a dielectric relaxation in ferroelectric thin films of the ABO3
family. We have compared films of different compositions with several growth
modes: sputtering (with and without magnetron) and sol-gel. The relaxation was
observed at cryogenic temperature (T<100K) for frequencies from 100Hz up to
10MHz. This relaxation activation energy is always lower than 200meV. It is
very similar to the polaron relaxation that we reported in the parent bulk
perovskites. Being independent of the materials size, morphology and texture,
this relaxation can be a useful probe of defects in actual integrated
capacitors with no need for specific shapin
High-frequency dielectric spectroscopy of batio3 core - silica shell nanocomposites: Problem of interdiffusion
Three types of BaTiO3 core - amorphous nano-shell composite ceramics were
processed from the same core-shell powder by standard sintering, spark-plasma
sintering and two-step sintering techniques and characterized by XRD, HRSEM and
broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz
including the THz and IR range. The samples differed by porosity and by the
amount of interdiffusion from the cores to shells, in correlation with their
increasing porosity. The dielectric spectra were also calculated using suitable
models based on effective medium approximation. The measurements revealed a
strong dielectric dispersion below the THz range, which cannot be explained by
the modeling, and whose strength was in correlation with the degree of
interdiffusion. We assigned it to an effect of the interdiffusion layers,
giving rise to a strong interfacial polarization. It appears that the
high-frequency dielectric spectroscopy is an extremely sensitive tool for
detection of any gradient layers and sample inhomogeneities even in dielectric
materials with negligible conductivity
A wire-loop technique for implantation of an iliac branched device in a patient with previous surgery for a ruptured abdominal aortic aneurysm
We described a modified technique for implanting a bridging stent-graft into an iliac branched device. A 79-year-old male who had received aortobiiliac synthetic graft surgery for a ruptured abdominal aortic aneurysm six months earlier was admitted to our unit for treatment of a left common iliac aneurysm involving the origin of the hypogastric artery. A standard technique was unsuccessful at implanting the bridging stent-graft, and therefore a wire-loop guidewire over the graft bifurcation was used to stabilize the contralateral sheaths and to complete the implantation. © Turkish Society of Radiology 2012
Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users
How is music perceived by cochlear implant (CI) users? This question arises as "the next step" given the impressive performance obtained by these patients in language perception. Furthermore, how can music perception be evaluated beyond self-report rating, in order to obtain measurable data? To address this question, estimation of the frontal electroencephalographic (EEG) alpha activity imbalance, acquired through a 19-channel EEG cap, appears to be a suitable instrument to measure the approach/withdrawal (AW index) reaction to external stimuli. Specifically, a greater value of AW indicates an increased propensity to stimulus approach, and vice versa a lower one a tendency to withdraw from the stimulus. Additionally, due to prelingually and postlingually deafened pathology acquisition, children and adults, respectively, would probably differ in music perception. The aim of the present study was to investigate children and adult CI users, in unilateral (UCI) and bilateral (BCI) implantation conditions, during three experimental situations of music exposure (normal, distorted and mute). Additionally, a study of functional connectivity patterns within cerebral networks was performed to investigate functioning patterns in different experimental populations. As a general result, congruency among patterns between BCI patients and control (CTRL) subjects was seen, characterised by lowest values for the distorted condition (vs. normal and mute conditions) in the AW index and in the connectivity analysis. Additionally, the normal and distorted conditions were significantly different in CI and CTRL adults, and in CTRL children, but not in CI children. These results suggest a higher capacity of discrimination and approach motivation towards normal music in CTRL and BCI subjects, but not for UCI patients. Therefore, for perception of music CTRL and BCI participants appear more similar than UCI subjects, as estimated by measurable and not self-reported parameters
High quality MgB2 thin films in-situ grown by dc magnetron sputtering
Thin films of the recently discovered magnesium diboride (MgB2) intermetalic
superconducting compound have been grown using a magnetron sputtering
deposition technique followed by in-situ annealing at 830 C. High quality films
were obtained on both sapphire and MgO substrates. The best films showed
maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity
ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and
anisotropic critical field with gamma = 2.5 close to the values obtained for
single crystals. The preparation technique can be easily scaled to produce
large area in-situ films.Comment: 7 pages, 4 figure
EXAFS study of lead-free relaxor ferroelectric BaTi(1-x)Zr(x)O3 at the Zr K-edge
Extended X-ray absorption fine structure (EXAFS) experiments at the Zr K-edge
were carried out on perovskite relaxor ferroelectrics BaTi(1-x)Zr(x)O3 (BTZ) (x
= 0.25, 0.30, 0.35), and on BaZrO3 for comparison. Structural information up to
4.5 A around the Zr atoms is obtained, revealing that the local structure
differs notably from the average Pm-3m cubic structure deduced from X-ray
diffraction. In particular, our results show that the distance between Zr atoms
and their first oxygen neighbors is independent of the Zr substitution rate x
and equal to that measured in BaZrO3, while the X-ray cubic cell parameter
increases linearly with x. Furthermore, we show that the Zr atoms tend to
segregate in Zr-rich regions. We propose that the relaxor behavior in BTZ is
linked to random elastic fields generated by this particular chemical
arrangement, rather than to random electric fields as is the case in most
relaxors.Comment: 13 pages, 12 figures, 4 tables. Submitted to Phys. Rev.
Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters
Ground-state properties of deformed proton-rich odd-Z nuclei in the region
are described in the framework of Relativistic Hartree
Bogoliubov (RHB) theory. One-proton separation energies and ground-state
quadrupole deformations that result from fully self-consistent microscopic
calculations are compared with available experimental data. The model predicts
the location of the proton drip-line, the properties of proton emitters beyond
the drip-line, and provides information about the deformed single-particle
orbitals occupied by the odd valence proton.Comment: 9 pages, RevTeX, 3 PS figures, submitted Phys. Rev. Letter
B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
Ground-state properties of deformed proton emitters in the relativistic Hartree-Bogoliubov model
The Relativistic Hartree Bogoliubov (RHB) model is applied in the description
of ground-state properties of proton-rich odd-Z nuclei in the region . The NL3 effective interaction is used in the mean-field Lagrangian,
and pairing correlations are described by the pairing part of the finite range
Gogny interaction D1S. The model predicts the location of the proton drip-line,
the ground-state quadrupole deformations and one-proton separation energies at
and beyond the drip-line, the deformed single-particle orbitals occupied by the
odd valence proton, and the corresponding spectroscopic factors. The results of
fully self-consistent RHB calculations are compared with available experimental
data, and with predictions of the macroscopic-microscopic mass model.Comment: 39 pages, Latex, 6 e.p.s figures, Nucl. Phys. A in prin
- …
