100 research outputs found

    Controlled dephasing of a quantum dot in the Kondo regime

    Full text link
    Kondo correlation in a spin polarized quantum dot (QD) results from the dynamical formation of a spin singlet between the dot's net spin and a Kondo cloud of electrons in the leads, leading to enhanced coherent transport through the QD. We demonstrate here significant dephasing of such transport by coupling the QD and its leads to potential fluctuations in a near by 'potential detector'. The qualitative dephasing is similar to that of a QD in the Coulomb Blockade regime in spite of the fact that the mechanism of transport is quite different. A much stronger than expected suppression of coherent transport is measured, suggesting that dephasing is induced mostly in the 'Kondo cloud' of electrons within the leads and not in the QD.Comment: to be published in PR

    Kondo Physics in a Single Electron Transistor

    Full text link
    The question of how localized electrons interact with delocalized electrons is central to many problems at the forefront of solid state physics. The simplest example is the Kondo phenomenon, which occurs when an impurity atom with an unpaired electron is placed in a metal, and the energy of the unpaired electron is far below the Fermi energy. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. The confined droplet of electrons interacting with the leads of a single electron transistor (SET) is closely analogous to an impurity atom interacting with the delocalized electrons in a metal. (Meir, Wingreen and Lee, 1993) We report here measurements on a new generation of SETs that display all the aspects of the Kondo phenomenon: the spin singlet forms and causes an enhancement of the zero-bias conductance when the number of electrons on the artificial atom is odd but not when it is even. The singlet is altered by applying a voltage or magnetic field or by increasing the temperature, all in ways that agree with predictions. (Wingreen and Meir 1994)Comment: 10 pages of LaTeX plus 5 separate ps/eps figures. Submitted to Natur

    Entanglement, Dephasing, and Phase Recovery via Cross-Correlation Measurements of Electrons

    Full text link
    Determination of the path taken by a quantum particle leads to a suppression of interference and to a classical behavior. We employ here a quantum 'which path' detector to perform accurate path determination in a two-path-electron-interferometer; leading to full suppression of the interference. Following the dephasing process we recover the interference by measuring the cross-correlation between the interferometer and detector currents. Under our measurement conditions every interfering electron is dephased by approximately a single electron in the detector - leading to mutual entanglement of approximately single pairs of electrons.Comment: 13 Pages, 5 Figure

    The microscopic nature of localization in the quantum Hall effect

    Full text link
    The quantum Hall effect arises from the interplay between localized and extended states that form when electrons, confined to two dimensions, are subject to a perpendicular magnetic field. The effect involves exact quantization of all the electronic transport properties due to particle localization. In the conventional theory of the quantum Hall effect, strong-field localization is associated with a single-particle drift motion of electrons along contours of constant disorder potential. Transport experiments that probe the extended states in the transition regions between quantum Hall phases have been used to test both the theory and its implications for quantum Hall phase transitions. Although several experiments on highly disordered samples have affirmed the validity of the single-particle picture, other experiments and some recent theories have found deviations from the predicted universal behaviour. Here we use a scanning single-electron transistor to probe the individual localized states, which we find to be strikingly different from the predictions of single-particle theory. The states are mainly determined by Coulomb interactions, and appear only when quantization of kinetic energy limits the screening ability of electrons. We conclude that the quantum Hall effect has a greater diversity of regimes and phase transitions than predicted by the single-particle framework. Our experiments suggest a unified picture of localization in which the single-particle model is valid only in the limit of strong disorder

    The Role of Interactions in an Electronic Fabry-Perot Interferometer Operating in the Quantum Hall Effect Regime

    Full text link
    Interference of edge channels is expected to be a prominent tool for studying statistics of charged quasiparticles in the quantum Hall effect (QHE) [A. Stern (2008), Ann. Phys. 1:204; C. Chamon et al. (1997), Phys. Rev. B, 55:2331]. We present here a detailed study of an electronic Fabry-Perot interferometer (FPI) operating in the QHE regime [C. Chamon et al. (1997), Phys. Rev. B, 55:2331], with the phase of the interfering quasiparticles controlled by the Aharonov-Bohm (AB) effect. Our main finding is that Coulomb interactions among the electrons dominate the interference, even in a relatively large area FPI, leading to a strong dependence of the area enclosed by the interference loop on the magnetic field. In particular, for a composite edge structure, with a few independent edge channels propagating along the edge, interference of the outmost edge channel (belonging to the lowest Landau level) was insensitive to magnetic field; suggesting a constant enclosed flux. However, when any of the inner edge channels interfered, the enclosed flux decreased when the magnetic field increased. By intentionally varying the enclosed area with a biased metallic gate and observing the periodicity of the interference pattern, charges e (for integer filling factors) and e/3 (for a fractional filling factor) were found to be expelled from the FPI. Moreover, these observations provided also a novel way of detecting the charge of the interfering quasiparticles.Comment: 8 pages, 8 figure

    Atom Chips: Fabrication and Thermal Properties

    Full text link
    Neutral atoms can be trapped and manipulated with surface mounted microscopic current carrying and charged structures. We present a lithographic fabrication process for such atom chips based on evaporated metal films. The size limit of this process is below 1μ\mum. At room temperature, thin wires can carry more than 107^7A/cm2^2 current density and voltages of more than 500V. Extensive test measurements for different substrates and metal thicknesses (up to 5 μ\mum) are compared to models for the heating characteristics of the microscopic wires. Among the materials tested, we find that Si is the best suited substrate for atom chips
    corecore