755 research outputs found
EU Development of High Heat Flux Components
The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20MWm(-2), off normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scale of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view. The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of I dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a non-negligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads
Understanding the threats posed by non-native species: public vs. conservation managers.
Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone
Recommended from our members
Searches For High-Frequency Variations In The B-8 Solar Neutrino Flux At The Sudbury Neutrino Observatory
We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for InnovationDept. of Energy, USNational Energy Research Scientific Computing Center, USScience and Technologies Facilities Council, UKAstronom
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity
The Sudbury Neutrino Observatory (SNO) has precisely determined the total
active (nu_x) 8B solar neutrino flux without assumptions about the energy
dependence of the nu_e survival probability. The measurements were made with
dissolved NaCl in the heavy water to enhance the sensitivity and signature for
neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/-
0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and
standard solar models. A global analysis of these and other solar and reactor
neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta
= 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of
5.4 standard deviations.Comment: Submitted to Phys. Rev. Let
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
Recommended from our members
Low-Multiplicity Burst Search At The Sudbury Neutrino Observatory
Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory. Such bursts could indicate the detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (1999 November-2001 May), when the detector was filled with heavy water, and Phase II (2001 July-2003 August), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for Innovation, CanadaCanada Research Chairs, CanadaDepartment of Energy, USNational Energy Research Scientific Computing Center, USAlfred P. Sloan Foundation, USScience and Technology Facilities Council, UKFundacao para a Ciencia e a Technologia, PortugalAstronom
Electron Antineutrino Search at the Sudbury Neutrino Observatory
Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have
been set based on the \nuebar charged-current reaction on deuterium. The
reaction produces a positron and two neutrons in coincidence. This distinctive
signature allows a search with very low background for \nuebar's from the Sun
and other potential sources. Both differential and integral limits on the
\nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an
energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit
on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found
to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds
to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2}
s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3
-- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range
from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in
which only the two neutrons are detected. Assuming a \nuebar spectrum for the
neutron induced fission of naturally occurring elements, a flux limit of
Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
- …
