24 research outputs found

    Measuring femoral lesions despite CT metal artefacts: a cadaveric study

    Get PDF
    Objective Computed tomography is the modality of choice for measuring osteolysis but suffers from metal-induced artefacts obscuring periprosthetic tissues. Previous papers on metal artefact reduction (MAR) show qualitative improvements, but their algorithms have not found acceptance for clinical applications. We investigated to what extent metal artefacts interfere with the segmentation of lesions adjacent to a metal femoral implant and whether metal artefact reduction improves the manual segmentation of such lesions. Materials and methods We manually created 27 periprosthetic lesions in 10 human cadaver femora. We filled the lesions with a fibrotic interface tissue substitute. Each femur was fitted with a polished tapered cobalt-chrome prosthesis and imaged twice—once with the metal, and once with a substitute resin prosthesis inserted. Metalaffected CTs were processed using standard back-projection as well as projection interpolation (PI) MAR. Two experienced users segmented all lesions and compared segmentation accuracy. Results We achieved accurate delineation of periprosthetic lesions in the metal-free images. The presence of a metal implant led us to underestimate lesion volume and introduced geometrical errors in segmentation boundaries.MediamaticsElectrical Engineering, Mathematics and Computer Scienc

    INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

    No full text
    Simulation and visualization of dose uncertainties du

    A Quality-refinement Process for Medical Imaging Applications

    Full text link
    Summary Objectives: To introduce and evaluate a process for refinement of software quality that is suitable to research groups. In order to avoid constraining researchers too much, the quality improvement process has to be designed carefully. The scope of this paper is to present and evaluate a process to advance quality aspects of existing research prototypes in order to make them ready for initial clinical studies. The proposed process is tailored for research environments and therefore more lightweight than traditional quality management processes. Methods: Focus on quality criteria that are important at the given stage of the software life cycle. Usage of tools that automate aspects of the process is emphasized. To evaluate the additional effort that comes along with the process, it was exemplarily applied for eight prototypical software modules for medical image processing. Results: The introduced process has been applied to improve the quality of all prototypes so that they could be successfully used in clinical studies. The quality refinement yielded an average of 13 person days of additional effort per project. Overall, 107 bugs were found and resolved by applying the process. Conclusions: Careful selection of quality criteria and the usage of automated process tools lead to a lightweight quality refinement process suitable for scientific research groups that can be applied to ensure a successful transfer of technical software prototypes into clinical research workflows.</jats:p

    Model-based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

    No full text
    Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images
    corecore