757 research outputs found
On the escape of particles from cosmic ray modified shocks
Stationary solutions to the problem of particle acceleration at shock waves
in the non-linear regime, when the dynamical reaction of the accelerated
particles on the shock cannot be neglected, are known to show a prominent
energy flux escaping from the shock towards upstream infinity. On physical
grounds, the escape of particles from the upstream region of a shock has to be
expected in all those situations in which the maximum momentum of accelerated
particles, , decreases with time, as is the case for the Sedov-Taylor
phase of expansion of a shell Supernova Remnant, when both the shock velocity
and the cosmic ray induced magnetization decrease. In this situation, at each
time , particles with momenta larger than leave the system from
upstream, carrying away a large fraction of the energy if the shock is strongly
modified by the presence of cosmic rays. This phenomenon is of crucial
importance for explaining the cosmic ray spectrum detected at Earth. In this
paper we discuss how this escape flux appears in the different approaches to
non-linear diffusive shock acceleration, and especially in the quasi-stationary
semi-analytical kinetic ones. We apply our calculations to the Sedov-Taylor
phase of a typical supernova remnant, including in a self-consistent way
particle acceleration, magnetic field amplification and the dynamical reaction
on the shock structure of both particles and fields. Within this framework we
calculate the temporal evolution of the maximum energy reached by the
accelerated particles and of the escape flux towards upstream infinity. The
latter quantity is directly related to the cosmic ray spectrum detected at
Earth.Comment: Version accepted for publication in MNRA
Statistical analysis of a comprehensive list of visual binaries
Visual binary stars are the most abundant class of observed binaries. The
most comprehensive list of data on visual binaries compiled recently by
cross-matching the largest catalogues of visual binaries allowed a statistical
investigation of observational parameters of these systems. The dataset was
cleaned by correcting uncertainties and misclassifications, and supplemented
with available parallax data. The refined dataset is free from technical biases
and contains 3676 presumably physical visual pairs of luminosity class V with
known angular separations, magnitudes of the components, spectral types, and
parallaxes. We also compiled a restricted sample of 998 pairs free from
observational biases due to the probability of binary discovery. Certain
distributions of observational and physical parameters of stars of our dataset
are discussed.Comment: 12 pages, 8 figure
New insights on hadron acceleration at supernova remnant shocks
We outline the main features of nuclei acceleration at supernova remnant
forward shocks, stressing the crucial role played by self-amplified magnetic
fields in determining the energy spectrum observed in this class of sources. In
particular, we show how the standard predictions of the non-linear theory of
diffusive shock acceleration has to be completed with an additional ingredient,
which we propose to be the enhanced velocity of the magnetic irregularities
particles scatter against, to reconcile the theory of efficient particle
acceleration with recent observations of gamma-ray bright supernova remnants.Comment: 7 pages, 2 figures. To apper in "Cosmic-ray induced phenomenology in
star-forming environments: Proceedings of the 2nd Session of the Sant Cugat
Forum of Astrophysics" (April 16-19, 2012), Olaf Reimer and Diego F. Torres
(eds.
Hydrodynamic Simulation of Supernova Remnants Including Efficient Particle Acceleration
A number of supernova remnants (SNRs) show nonthermal X-rays assumed to be
synchrotron emission from shock accelerated TeV electrons. The existence of
these TeV electrons strongly suggests that the shocks in SNRs are sources of
galactic cosmic rays (CRs). In addition, there is convincing evidence from
broad-band studies of individual SNRs and elsewhere that the particle
acceleration process in SNRs can be efficient and nonlinear. If SNR shocks are
efficient particle accelerators, the production of CRs impacts the thermal
properties of the shock heated, X-ray emitting gas and the SNR evolution. We
report on a technique that couples nonlinear diffusive shock acceleration,
including the backreaction of the accelerated particles on the structure of the
forward and reverse shocks, with a hydrodynamic simulation of SNR evolution.
Compared to models which ignore CRs, the most important hydrodynamical effects
of placing a significant fraction of shock energy into CRs are larger shock
compression ratios and lower temperatures in the shocked gas. We compare our
results, which use an approximate description of the acceleration process, with
a more complete model where the full CR transport equations are solved (i.e.,
Berezhko et al., 2002), and find excellent agreement for the CR spectrum summed
over the SNR lifetime and the evolving shock compression ratio. The importance
of the coupling between particle acceleration and SNR dynamics for the
interpretation of broad-band continuum and thermal X-ray observations is
discussed.Comment: Accepted for publication in A & A; 14 pages including 11 figure
UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation
A mechanism for proton acceleration to ~10^21eV is suggested. It may operate
in accretion flows onto thin dark matter filaments of cosmic structure
formation. The flow compresses the ambient magnetic field to strongly increase
and align it with the filament. Particles begin the acceleration by the ExB
drift with the accretion flow. The energy gain in the drift regime is limited
by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the
filament, the drift turns into the gyro-motion around the filament so that the
particle moves parallel to the azimuthal electric field. In this 'betatron'
regime the acceleration speeds up to rapidly reach the electrodynamic limit
for an accelerator with magnetic field and the orbit radius
(Larmor radius). The periodic orbit becomes unstable and the particle
slings out of the filament to the region of a weak (uncompressed) magnetic
field, which terminates the acceleration.
The mechanism requires pre-acceleration that is likely to occur in structure
formation shocks upstream or nearby the filament accretion flow. Previous
studies identify such shocks as efficient proton accelerators to a firm upper
limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present
mechanism combines explosive energy gain in its final (betatron) phase with
prompt particle release from the region of strong magnetic field. It is this
combination that allows protons to overcome both the photo-pion and the
synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement
on accelerator to reach a given E_max placed by the accelerator energy
dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is
circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA
Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration
We provide a both qualitative and quantitative comparison among different
approaches aimed to solve the problem of non-linear diffusive acceleration of
particles at shocks. In particular, we show that state-of-the-art models
(numerical, Monte Carlo and semi-analytical), even if based on different
physical assumptions and implementations, for typical environmental parameters
lead to very consistent results in terms of shock hydrodynamics, cosmic ray
spectrum and also escaping flux spectrum and anisotropy. Strong points and
limits of each approach are also discussed, as a function of the problem one
wants to study.Comment: 26 pages, 4 figures, published version (references updated
Cosmic-ray acceleration in supernova remnants: non-linear theory revised
A rapidly growing amount of evidences, mostly coming from the recent
gamma-ray observations of Galactic supernova remnants (SNRs), is seriously
challenging our understanding of how particles are accelerated at fast shocks.
The cosmic-ray (CR) spectra required to account for the observed phenomenology
are in fact as steep as , i.e., steeper than the
test-particle prediction of first-order Fermi acceleration, and significantly
steeper than what expected in a more refined non-linear theory of diffusive
shock acceleration. By accounting for the dynamical back-reaction of the
non-thermal particles, such a theory in fact predicts that the more efficient
the particle acceleration, the flatter the CR spectrum. In this work we put
forward a self-consistent scenario in which the account for the magnetic field
amplification induced by CR streaming produces the conditions for reversing
such a trend, allowing --- at the same time --- for rather steep spectra and CR
acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs
are the sources of Galactic CRs. In particular, we quantitatively work out the
details of instantaneous and cumulative CR spectra during the evolution of a
typical SNR, also stressing the implications of the observed levels of
magnetization on both the expected maximum energy and the predicted CR
acceleration efficiency. The latter naturally turns out to saturate around
10-30%, almost independently of the fraction of particles injected into the
acceleration process as long as this fraction is larger than about .Comment: 24 pages, 5 figures, accepted for publication in JCA
Dynamical effects of self-generated magnetic fields in cosmic ray modified shocks
Recent observations of greatly amplified magnetic fields () around supernova shocks are consistent with the predictions of the
non-linear theory of particle acceleration (NLT), if the field is generated
upstream of the shock by cosmic ray induced streaming instability. The high
acceleration efficiencies and large shock modifications predicted by NLT need
however to be mitigated to confront observations, and this is usually assumed
to be accomplished by some form of turbulent heating. We show here that
magnetic fields with the strength inferred from observations have an important
dynamical role on the shock, and imply a shock modification substantially
reduced with respect to the naive unmagnetized case. The effect appears as soon
as the pressure in the turbulent magnetic field becomes comparable with the
pressure of the thermal gas. The relative importance of this unavoidable effect
and of the poorly known turbulent heating is assessed. More specifically we
conclude that even in the cases in which turbulent heating may be of some
importance, the dynamical reaction of the field cannot be neglected, as instead
is usually done in most current calculations.Comment: 4 pages, 1 figure, accepted for publication in ApJ Letter
- …
