1,757 research outputs found
Waveform simulator Patent
Sign wave generation simulator for variable amplitude, frequency, damping, and phase pulses for oscilloscope displa
Experimental investigation of the fundamental modes of a collisionless plasma Final report, 10 Mar. 1964 - 31 Oct. 1967
Propagation of electron cyclotron waves and effects of low frequency noise in collisionless plasm
The origin of very wide binary systems
The majority of stars in the Galactic field and halo are part of binary or
multiple systems. A significant fraction of these systems have orbital
separations in excess of thousands of astronomical units, and systems wider
than a parsec have been identified in the Galactic halo. These binary systems
cannot have formed through the 'normal' star-formation process, nor by capture
processes in the Galactic field. We propose that these wide systems were formed
during the dissolution phase of young star clusters. We test this hypothesis
using N-body simulations of evolving star clusters and find wide binary
fractions of 1-30%, depending on initial conditions. Moreover, given that most
stars form as part of a binary system, our theory predicts that a large
fraction of the known wide 'binaries' are, in fact, multiple systems.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 266,
eds. R. de Grijs & J.R.D. Lepin
Is our Sun a Singleton?
Most stars are formed in a cluster or association, where the number density
of stars can be high. This means that a large fraction of initially-single
stars will undergo close encounters with other stars and/or exchange into
binaries. We describe how such close encounters and exchange encounters can
affect the properties of a planetary system around a single star. We define a
singleton as a single star which has never suffered close encounters with other
stars or spent time within a binary system. It may be that planetary systems
similar to our own solar system can only survive around singletons. Close
encounters or the presence of a stellar companion will perturb the planetary
system, often leaving planets on tighter and more eccentric orbits. Thus
planetary systems which initially resembled our own solar system may later more
closely resemble some of the observed exoplanet systems.Comment: 2 pages, 1 figure. To be published in the proceedings of IAUS246
"Dynamical Evolution of Dense Stellar Systems". Editors: E. Vesperini (Chief
Editor), M. Giersz, A. Sill
Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model
The influence of the finite number N of particles coupled to a monochromatic
wave in a collisionless plasma is investigated. For growth as well as damping
of the wave, discrete particle numerical simulations show an N-dependent long
time behavior resulting from the dynamics of individual particles. This
behavior differs from the one due to the numerical errors incurred by Vlasov
approaches. Trapping oscillations are crucial to long time dynamics, as the
wave oscillations are controlled by the particle distribution inhomogeneities
and the pulsating separatrix crossings drive the relaxation towards thermal
equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
Mas-related G-protein–coupled receptors inhibit pathological pain in mice
An important objective of pain research is to identify novel drug targets for the treatment of pathological persistent pain states, such as inflammatory and neuropathic pain. Mas-related G-protein–coupled receptors (Mrgprs) represent a large family of orphan receptors specifically expressed in small-diameter nociceptive primary sensory neurons. To determine the roles of Mrgprs in persistent pathological pain states, we exploited a mouse line in which a chromosomal locus spanning 12 Mrgpr genes was deleted (KO). Initial studies indicated that these KO mice show prolonged mechanical- and thermal-pain hypersensitivity after hind-paw inflammation compared with wild-type littermates. Here, we show that this mutation also enhances the windup response of dorsal-horn wide dynamic-range neurons, an electrophysiological model for the triggering of central pain sensitization. Deletion of the Mrgpr cluster also blocked the analgesic effect of intrathecally applied bovine adrenal medulla peptide 8–22 (BAM 8–22), an MrgprC11 agonist, on both inflammatory heat hyperalgesia and neuropathic mechanical allodynia. Spinal application of bovine adrenal medulla peptide 8–22 also significantly attenuated windup in wild-type mice, an effect eliminated in KO mice. These data suggest that members of the Mrgpr family, in particular MrgprC11, may constitute an endogenous inhibitory mechanism for regulating persistent pain in mice. Agonists for these receptors may, therefore, represent a class of antihyperalgesics for treating persistent pain with minimal side effects because of the highly specific expression of their targets
Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.
BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice
- …
