4,074 research outputs found

    Thermal broadening of the J-band in disordered linear molecular aggregates: A theoretical study

    Get PDF
    We theoretically study the temperature dependence of the J-band width in disordered linear molecular aggregates, caused by dephasing of the exciton states due to scattering on vibrations of the host matrix. In particular, we consider inelastic one- and two-phonon scattering between different exciton states (energy-relaxation-induced dephasing), as well as elastic two-phonon scattering of the excitons (pure dephasing). The exciton states follow from numerical diagonalization of a Frenkel Hamiltonian with diagonal disorder; the scattering rates between them are obtained using the Fermi Golden Rule. A Debye-like model for the one- and two-phonon spectral densities is used in the calculations. We find that, owing to the disorder, the dephasing rates of the individual exciton states are distributed over a wide range of values. We also demonstrate that the dominant channel of two-phonon scattering is not the elastic one, as is often tacitly assumed, but rather comes from a similar two-phonon inelastic scattering process. In order to study the temperature dependence of the J-band width, we simulate the absorption spectrum, accounting for the dephasing induced broadening of the exciton states. We find a power-law (T^p) temperature scaling of the effective homogeneous width, with an exponent p that depends on the shape of the spectral density of host vibrations. In particular, for a Debye model of vibrations, we find p ~ 4, which is in good agreement with experimental data on J-aggregates of pseudoisocyanine [J. Phys. Chem. A 101, 7977 (1997)].Comment: 14 pages, 7 figure

    DNA double helices for single molecule electronics

    Get PDF
    The combination of self-assembly and electronic properties as well as its true nanoscale dimensions make DNA a promising candidate for a building block of single molecule electronics. We argue that the intrinsic double helix conformation of the DNA strands provides a possibility to drive the electric current through the DNA by the perpendicular electric (gating) field. The transistor effect in the poly(G)-poly(C) synthetic DNA is demonstrated within a simple model approach. We put forward experimental setups to observe the predicted effect and discuss possible device applications of DNA. In particular, we propose a design of the single molecule analog of the Esaki diode.Comment: 4 pages, 4 figur

    Leptonic origin of the 100 MeV gamma-ray emission from the Galactic Centre

    Full text link
    The Galactic centre is a bright gamma-ray source with the GeV-TeV band spectrum composed of two distinct components in the 1-10 GeV and 1-10 TeV energy ranges. The nature of these two components is not clearly understood. We investigate the gamma-ray properties of the Galactic centre to clarify the origin of the observed emission. We report imaging, spectral, and timing analysis of data from 74 months of observations of the Galactic centre by FERMI/LAT gamma-ray telescope complemented by sub-MeV data from approximately ten years of INTEGRAL/PICsIT observations. We find that the Galactic centre is spatially consistent with the point source in the GeV band. The tightest 3 sigma upper limit on its radius is 0.13 degree in the 10-300 GeV energy band. The spectrum of the source in the 100 MeV energy range does not have a characteristic turnover that would point to the pion decay origin of the signal. Instead, the source spectrum is consistent with a model of inverse Compton scattering by high-energy electrons. In this a model, the GeV bump in the spectrum originates from an episode of injection of high-energy particles, which happened ~300 years ago. This injection episode coincides with the known activity episode of the Galactic centre region, previously identified using X-ray observations. The hadronic model of source activity could be still compatible with the data if bremsstrahlung emission from high-energy electrons was present in addition to pion decay emission.Comment: To match the accepted versio
    corecore