818 research outputs found

    Manipulation of ultracold atomic mixtures using microwave techniques

    Full text link
    We used microwave radiation to evaporatively cool a mixture of of 133Cs and 87Rb atoms in a magnetic trap. A mixture composed of an equal number (around 10^4) of Rb and Cs atoms in their doubly polarized states at ultracold temperatures was prepared. We also used microwaves to selectively evaporate atoms in different Zeeman states.Comment: 9 pages, 6 figure

    Search for the Hypothetical pi -> mu x Decay

    Full text link
    The KARMEN collaboration has reported the possible observation of a hitherto unknown neutral and weakly interacting particle x, which is produced in the decay pi -> mu + x with a mass m(x) = 33.9 MeV. We have searched for this hypothetical decay branch by studying muons from pion decay in flight with the LEPS spectrometer at the piE3 channel at PSI and find branching ratios BR(pi- to mu- anti-x) < 4e-7 and BR(pi+ to mu+ x) < 7e-8 (95\% C.L.). Together with the limit BR > 2e-8 derived in a recent theoretical paper our result would leave only a narrow region for the existence of x if it is a heavy neutrino.Comment: 10 pages, TeX (uses epsf), 3 Postscript figures uu-encode

    Village Baseline Study: Site Analysis Report for Xai Xai, Zongoene Village, Bairro 1, Mozambique

    Get PDF
    This is the report of the village baseline study of Zongoene Village, Bairro 1, in the CCAFS benchmark site of Xai Xai, Mozambique in May 2013 to complement an earlier household baseline survey done in the same village. Zongoene village is located by the coast at the mouth of the Limpopo River where there are extensive wetlands along with forests and sand dunes. The village is divided into five sections: Bairro 1, Bairro 2, Bairro 3, Bairro 4 and Bairro 5. Zongoene is the result of a government resettlement program that brought people together to ease service provision. Nonetheless, the level and quality of services remain very low with roads in bad condition, local schools poorly built and lacking water, one hospital with insufficient staff and resources, and nascent electrical availability. The concentrated and expanding population is also increasing pressures on the environment as demand for food and farmland grows

    Village Baseline Study: Site Analysis Report for Chicualacuala, Maluana, Mozambique (MO0145)

    Get PDF
    This is the report of the village baseline study of Maluana village in the CCAFS benchmark site of Chicualacuala, Mozambique from May 5-12, 2013 to complement an earlier household baseline survey done in the same village

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis

    Get PDF
    Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS

    Low-temperature gas from marine shales

    Get PDF
    Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock)

    Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    Get PDF
    It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium

    Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments

    Full text link
    We attempt to provide physical interpretations of light-induced desorption phenomena that have recently been observed for alkali atoms on glass surfaces of alkali vapor cells used in atomic physics experiments. We find that the observed desorption phenomena are closely related to recent studies in surface science, and can probably be understood in the context of these results. If classified in terms of the photon-energy dependence, the coverage and the bonding state of the alkali adsorbates, the phenomena fall into two categories: It appears very likely that the neutralization of isolated ionic adsorbates by photo-excited electron transfer from the substrate is the origin of the desorption induced by ultraviolet light in ultrahigh vacuum cells. The desorption observed in low temperature cells, on the other hand, which is resonantly dependent on photon energy in the visible light range, is quite similar to light-induced desorption stimulated by localized electronic excitation on metallic aggregates. More detailed studies of light-induced desorption events from surfaces well characterized with respect to alkali coverage-dependent ionicity and aggregate morphology appear highly desirable for the development of more efficient alkali atom sources suitable to improve a variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of Surface Science and Nanotechnology at http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl
    corecore