1,158 research outputs found
Theory of attosecond delays in laser-assisted photoionization
We study the temporal aspects of laser-assisted extreme ultraviolet (XUV)
photoionization using attosecond pulses of harmonic radiation. The aim of this
paper is to establish the general form of the phase of the relevant transition
amplitudes and to make the connection with the time-delays that have been
recently measured in experiments. We find that the overall phase contains two
distinct types of contributions: one is expressed in terms of the phase-shifts
of the photoelectron continuum wavefunction while the other is linked to
continuum--continuum transitions induced by the infrared (IR) laser probe. Our
formalism applies to both kinds of measurements reported so far, namely the
ones using attosecond pulse trains of XUV harmonics and the others based on the
use of isolated attosecond pulses (streaking). The connection between the
phases and the time-delays is established with the help of finite difference
approximations to the energy derivatives of the phases. This makes clear that
the observed time-delays is a sum of two components: a one-photon Wigner-like
delay and an universal delay that originates from the probing process itself.Comment: 15 pages, 10 figures, special issue 'Attosecond spectroscopy' Chem.
Phy
Relativistic central--field Green's functions for the RATIP package
From perturbation theory, Green's functions are known for providing a simple
and convenient access to the (complete) spectrum of atoms and ions. Having
these functions available, they may help carry out perturbation expansions to
any order beyond the first one. For most realistic potentials, however, the
Green's functions need to be calculated numerically since an analytic form is
known only for free electrons or for their motion in a pure Coulomb field.
Therefore, in order to facilitate the use of Green's functions also for atoms
and ions other than the hydrogen--like ions, here we provide an extension to
the Ratip program which supports the computation of relativistic
(one--electron) Green's functions in an -- arbitrarily given -- central--field
potential \rV(r). Different computational modes have been implemented to
define these effective potentials and to generate the radial Green's functions
for all bound--state energies . In addition, care has been taken to
provide a user--friendly component of the Ratip package by utilizing features
of the Fortran 90/95 standard such as data structures, allocatable arrays, or a
module--oriented design.Comment: 20 pages, 1 figur
The structure of Chariklo's rings from stellar occultations
Two narrow and dense rings (called C1R and C2R) were discovered around the
Centaur object (10199) Chariklo during a stellar occultation observed on 2013
June 3. Following this discovery, we planned observations of several
occultations by Chariklo's system in order to better characterize the physical
properties of the ring and main body. Here, we use 12 successful occulations by
Chariklo observed between 2014 and 2016. They provide ring profiles (physical
width, opacity, edge structure) and constraints on the radii and pole position.
Our new observations are currently consistent with the circular ring solution
and pole position, to within the km formal uncertainty for the ring
radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal
significant width variations from to 7.5 km. The width of the fainter
ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and
outer edges of C1R are consistent with infinitely sharp boundaries, with
typical upper limits of one kilometer for the transition zone between the ring
and empty space. No constraint on the sharpness of C2R's edges is available. A
1 upper limit of m is derived for the equivalent width of
narrow (physical width <4 km) rings up to distances of 12,000 km, counted in
the ring plane
Determinants of impact : towards a better understanding of encounters with the arts
The article argues that current methods for assessing the impact of the arts are largely based on a fragmented and incomplete understanding of the cognitive, psychological and socio-cultural dynamics that govern the aesthetic experience. It postulates that a better grasp of the interaction between the individual and the work of art is the necessary foundation for a genuine understanding of how the arts can affect people. Through a critique of philosophical and empirical attempts to capture the main features of the aesthetic encounter, the article draws attention to the gaps in our current understanding of the responses to art. It proposes a classification and exploration of the factors—social, cultural and psychological—that contribute to shaping the aesthetic experience, thus determining the possibility of impact. The ‘determinants of impact’ identified are distinguished into three groups: those that are inherent to the individual who interacts with the artwork; those that are inherent to the artwork; and ‘environmental factors’, which are extrinsic to both the individual and the artwork. The article concludes that any meaningful attempt to assess the impact of the arts would need to take these ‘determinants of impact’ into account, in order to capture the multidimensional and subjective nature of the aesthetic experience
A realistic example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields
Statistics of tunneling rates in the presence of chaotic classical dynamics
is discussed on a realistic example: a hydrogen atom placed in parallel uniform
static electric and magnetic fields, where tunneling is followed by ionization
along the fields direction. Depending on the magnetic quantum number, one may
observe either a standard Porter-Thomas distribution of tunneling rates or, for
strong scarring by a periodic orbit parallel to the external fields, strong
deviations from it. For the latter case, a simple model based on random matrix
theory gives the correct distribution.Comment: Submitted to Phys. Rev.
Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field
We consider the resummation of the perturbation series describing the energy
displacement of a hydrogenic bound state in an electric field (known as the
Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal
power series in the electric field strength. The perturbation series exhibits a
rich singularity structure in the Borel plane. Resummation methods are
presented which appear to lead to consistent results even in problematic cases
where isolated singularities or branch cuts are present on the positive and
negative real axis in the Borel plane. Two resummation prescriptions are
compared: (i) a variant of the Borel-Pade resummation method, with an
additional improvement due to utilization of the leading renormalon poles (for
a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317,
p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with
an analytic continuation by conformal mapping, and Pade approximations in the
conformal variable. The singularity structure in the case of the LoSurdo-Stark
effect in the complex Borel plane is shown to be similar to (divergent)
perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results
enhanced; one section and one appendix added and some minor changes and
additions; to appear in phys. rev.
Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study
Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state
Determination of diffusion coefficients of glycerol and glucose from starch based thermoplastic compounds on simulated physiological solution
Blends of corn starch with poly(ethylene-vinylalcohol) copolymer (SEVA-C) have been
studied and reported as biodegradable. These materials are known to be sensitive to
enzymatic action, evidencing a degradation of the starch phase in α-amylase assays.
However, from the physical-chemical point of view the degradation of the blend is mainly
associated with the leaching of glycerol, since other compounds are not released and no
carbohydrates were found in the degradation solution. Based on these results, the present
work attempts to determinate the respective diffusion coefficients. Four different
experiments were performed, using samples with different thicknesses that were
immersed in a simulated physiological solution. High performance liquid chromatography
(HPLC) was used to separate the sugar derivatives and glycerol from the degradation
solutions. The obtained data were fitted to an empirical model to allow the estimation of
the diffusion coefficient for glycerol and glucose, based on the analytical solution for Fick’s
law of diffusion, and a good agreement was found (R² ≈ 1). The glycerol leaches quickly
out during the first few days of immersion, stabilizing thereafter, presenting greater
diffusion coefficients for thicker samples. As the quantity of saccharides in the solution
remains almost invariable along the experiments, this work also confirms that the
degradation process is difficult without the action of enzymes
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
- …
