712 research outputs found

    Lidar observations of the Planetary Boundary Layer above the city of Thessaloniki, Greece

    Get PDF
    Aerosol measurements have been performed in Greece since 1994, using a backscattering lidar system. The main scientific objective has been to evaluate the vertical structure of the Planetary Boundary Layer (PBL) in urban sites of Greece, using suspended aerosols as tracers of the atmospheric motion. The observations presented here were performed in early 1996, over the city of Thessaloniki in Northern Greece, close to the sea shore. The lidar system was operated under varying air pollution and meteorological conditions. The vertical profiles of the aerosol extinction and backscattering coefficients were retrieved from the lidar signal, using the Fernald-Klett inversion algorithm. Comparison between standard meteorological data from radiosondes and ground stations proves that lidar aerosol profiles can be successfully used to monitor the time variation in the layering of the lower troposphere

    The AMMA mulid network for aerosol characterization in West Africa

    Full text link
    Three ground based portable low power consumption microlidars (MULID) have been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analyses (AMMA) project for the characterization of aerosols optical properties. A description of the instrument and a discussion of the data inversion method, including a careful analysis of measurement uncertainties (systematic and statistical errors) are presented. Some case studies of typical lidar profiles observed over the Banizoumbou site during 2006 are shown and discussed with respect to the AERONET 7-day back-trajectories and the biomass burning emissions from the Combustion Emission database for the AMMA campaign

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere

    Lack of replication of interactions between polymorphisms in rheumatoid arthritis susceptibility: case-control study

    Get PDF
    Introduction: Approximately 100 loci have been definitively associated with rheumatoid arthritis (RA) susceptibility. However, they explain only a fraction of RA heritability. Interactions between polymorphisms could explain part of the remaining heritability. Multiple interactions have been reported, but only the shared epitope (SE) × protein tyrosine phosphatase nonreceptor type 22 (PTPN22) interaction has been replicated convincingly. Two recent studies deserve attention because of their quality, including their replication in a second sample collection. In one of them, researchers identified interactions between PTPN22 and seven single-nucleotide polymorphisms (SNPs). The other showed interactions between the SE and the null genotype of glutathione S-transferase Mu 1 (GSTM1) in the anti-cyclic citrullinated peptide-positive (anti-CCP+) patients. In the present study, we aimed to replicate association with RA susceptibility of interactions described in these two high-quality studies. Methods: A total of 1,744 patients with RA and 1,650 healthy controls of Spanish ancestry were studied. Polymorphisms were genotyped by single-base extension. SE genotypes of 736 patients were available from previous studies. Interaction analysis was done using multiple methods, including those originally reported and the most powerful methods described. Results: Genotypes of one of the SNPs (rs4695888) failed quality control tests. The call rate for the other eight polymorphisms was 99.9%. The frequencies of the polymorphisms were similar in RA patients and controls, except for PTPN22 SNP. None of the interactions between PTPN22 SNPs and the six SNPs that met quality control tests was replicated as a significant interaction term the originally reported finding or with any of the other methods. Nor was the interaction between GSTM1 and the SE replicated as a departure from additivity in anti-CCP+ patients or with any of the other methods. Conclusions: None of the interactions tested were replicated in spite of sufficient power and assessment with different assays. These negative results indicate that whether interactions are significant contributors to RA susceptibility remains unknown and that strict standards need to be applied to claim that an interaction exists
    corecore