411 research outputs found

    Texture and Cofactor Zeros of the Neutrino Mass Matrix

    Full text link
    We study Majorana neutrino mass matrices that have two texture zeros, or two cofactor zeros, or one texture zero and one cofactor zero. The two texture/cofactor zero conditions give four constraints, which in conjunction with the five measured oscillation parameters completely determine the nine independent real parameters of the neutrino mass matrix. We also study the implications that future measurements of neutrinoless double beta decay and the Dirac CP phase will have on these cases.Comment: 25 pages, 8 tables, 11 figures. Version to appear in JHE

    Partial quark-lepton universality and neutrino CP violation

    Get PDF
    We study a model with partial quark-lepton universality that can naturally arise in grand unified theories. We find that constraints on the model can be reduced to a single condition on the Dirac CP phase δ\delta in the neutrino sector. Using our current knowledge of the CKM and PMNS mixing matrices, we predict 32.4<δ<32.0-32.4^\circ < \delta < 32.0^\circ at 2σ2\sigma.Comment: 8 pages, 1 figure. Version to appear in the special issue, "Neutrino Masses and Oscillations 2015", of Advances in High Energy Physic

    Challenging Lorentz noninvariant neutrino oscillations without neutrino masses

    Full text link
    We show that the combined data from solar, long-baseline and reactor neutrino experiments can exclude the generalized bicycle model of Lorentz noninvariant direction-dependent and/or direction-independent oscillations of massless neutrinos. This model has five parameters, which is more than is needed in standard oscillation phenomenology with neutrino masses. Solar data alone are sufficient to exclude the pure direction-dependent case. The combination of solar and long-baseline data rules out the pure direction-independent case. With the addition of KamLAND data, a mixture of direction-dependent and direction-independent terms in the effective Hamiltonian is also excluded.Comment: 19 pages, 6 figures, 1 table. Version to appear in PL

    Generic dark matter signature for gamma-ray telescopes

    Full text link
    We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma-rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into light fermion pairs, then the amplitude for the dominant 3-body final state f^+f^-\gamma has a unique form dictated by gauge invariance. This amplitude and the corresponding energy spectra hold for annihilation of DM Majorana fermions or self-conjugate scalars, and for decay of DM scalars, thus encompassing a variety of possibilities. Within this scenario, we analyze Fermi LAT, PAMELA and HESS data, and predict a hint in future Fermi gamma-ray data that portends a striking signal at atmospheric Cherenkov telescopes (ACTs).Comment: 9 pages, 4 figures. Version to appear in PR

    Which long-baseline neutrino experiments are preferable?

    Full text link
    We discuss the physics of superbeam upgrades, where we focus on T2KK, a NuMI beam line based experiment NOvA*, and a wide band beam (WBB) experiment independent of the NuMI beam line. For T2KK, we find that the Japan-Korea baseline helps resolve parameter degeneracies, but the improvement due to correlated systematics between the two detectors (using identical detectors) is only moderate. For an upgrade of NOvA with a liquid argon detector, we demonstrate that the Ash River site is preferred compared to alternatives, such as at the second oscillation maximum, and is the optimal site within the U.S. For a WBB experiment, we find that high proton energies and long decay tunnels are preferable. We compare water Cherenkov and liquid argon technologies, and find the break-even point in detector cost at about 4:1. In order to compare the physics potential of the different experimental configurations, we use the concept of exposure to normalize the performance. We find that experiments with WBBs are the best experimental concept. NOvA* could be competitive with sufficient luminosity. If sin22θ13\sin^2 2\theta_{13} > 0.01, a WBB experiment can perform better than a neutrino factory.Comment: 31 pages, 13 figures, 5 tables. Version to appear in PR
    corecore