142 research outputs found

    Oxidative Desulphurization of Diesel Fuels

    Get PDF
    Oxidative desulphurization (ODS) enables attainment of ultra-low sulphur content in diesel fuels by oxidation of refractory sulphur compounds that are difficult to remove with hydrodesulphurization when the sulphur content needs to be attained below 10 mg kg–1. In this work, the effect of the process conditions of ultrasound-assisted ODS (using N,N-dimethylformamide and methanol as extraction solvents) on real diesel fuels was researched. The experiments were conducted in a batch reactor with hydrogen peroxide as oxidant and acetic acid as catalyst. Temperature increase, reaction time extension, and increase in the amount of dibenzothiophene (DBT) in real diesel fuels showed a positive impact on the ODS process efficiency. Comparison of ultrasound-assisted ODS and ODS in a mechanically stirred system revealed a significant reduction in reaction time. The very low sulphur concentrations (3 mg kg–1) in the product obtained after 30 minutes of oxidation confirmed high efficiency of the oxidative desulphurization

    Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia

    Get PDF
    Background: The importance of local breeds as genetic reservoirs of valuable genetic variation is well established. Pig breeding in Central and South-Eastern Europe has a long tradition that led to the formation of several local pig breeds. In the present study, genetic diversity parameters were analysed in six autochthonous pig breeds from Slovenia, Croatia and Serbia (Banija spotted, Black Slavonian, Turopolje pig, Swallow-bellied Mangalitsa, Moravka and Krskopolje pig). Animals from each of these breeds were genotyped using microsatellites and single nucleotide polymorphisms (SNPs). The results obtained with these two marker systems and those based on pedigree data were compared. In addition, we estimated inbreeding levels based on the distribution of runs of homozygosity (ROH) and identified genomic regions under selection pressure using ROH islands and the integrated haplotype score (iHS). Results: The lowest heterozygosity values calculated from microsatellite and SNP data were observed in the Turopolje pig. The observed heterozygosity was higher than the expected heterozygosity in the Black Slavonian, Moravka and Turopolje pig. Both types of markers allowed us to distinguish clusters of individuals belonging to each breed. The analysis of admixture between breeds revealed potential gene flow between the Mangalitsa and Moravka, and between the Mangalitsa and Black Slavonian, but no introgression events were detected in the Banija spotted and Turopolje pig. The distribution of ROH across the genome was not uniform. Analysis of the ROH islands identified genomic regions with an extremely high frequency of shared ROH within the Swallow-bellied Mangalitsa, which harboured genes associated with cholesterol biosynthesis, fatty acid metabolism and daily weight gain. The iHS approach to detect signatures of selection revealed candidate regions containing genes with potential roles in reproduction traits and disease resistance. Conclusions: Based on the estimation of population parameters obtained from three data sets, we showed the existence of relationships among the six pig breeds analysed here. Analysis of the distribution of ROH allowed us to estimate the level of inbreeding and the extent of homozygous regions in these breeds. The iHS analysis revealed genomic regions potentially associated with phenotypic traits and allowed the detection of genomic regions under selection pressure

    Potential Use of Near-Infrared Spectroscopy to Predict Fatty Acid Profile of Meat from Different European Autochthonous Pig Breeds

    Get PDF
    Autochthonous pig breeds provide products of differentiated quality, among which quality control is difficult to perform and insufficient for current market requirements. The present research evaluates the predictive ability of near‐infrared (NIR) spectroscopy, combined with chemometric methods as a rapid and affordable tool to assure traceability and quality control. Thus, NIR technology was assessed for intact and minced muscle Longissimus thoracis et lumborum samples collected from 12 European autochthonous pig breeds for the quantification of lipid content and fatty acid composition. Different tests were performed using different numbers of samples for calibration and validation. The best predictive ability was found using minced presentation and set with 80% of the samples for the calibration and the remaining 20% for the external validation test for the following traits: lipid content and saturated and polyunsaturated fatty acids, which attained both the highest determination coefficients (0.89, 0.61, and 0.65, respectively) and the lowest root mean square errors in external validation (0.62, 1.82, and 1.36, respectively). Lower predictive ability was observed for intact muscles. These results could contribute to improve the management of autochthonous breeds and to ensure quality of their products by traditional meat industry chains

    Association and Interaction Analyses of GABBR1 and GABBR2 with Nicotine Dependence in European- and African-American Populations

    Get PDF
    Previous studies have demonstrated that the γ-aminobutyric acid type B (GABAB) receptor plays an essential role in modulating neurotransmitter release and regulating the activity of ion channels and adenyl cyclase. However, whether the naturally occurring polymorphisms in the two GABAB receptor subunit genes interact with each other to alter susceptibility to nicotine dependence (ND) remains largely unknown. In this study, we genotyped 5 and 33 single nucleotide polymorphisms (SNPs) for GABAB receptor subunit 1 and 2 genes (GABBR1, GABBR2), respectively, in a sample of 2037 individuals from 602 nuclear families of African- American (AA) or European-American (EA) origin. We conducted association analyses to determine (1) the association of each subunit gene with ND at both the individual SNP and haplotype levels and (2) the collective effect(s) of SNPs in both GABAB subunits on the development of ND. Several individual SNPs and haplotypes in GABBR2 were significantly associated with ND in both ethnic samples. Two haplotypes in AAs and one haplotype in EAs showed a protective effect against ND, whilst two other haplotypes in AAs and three haplotypes in EAs showed a risk effect for developing ND. Interestingly, these significant haplotypes were confined to two regions of GABBR2 in the AA and EA samples. Additionally, we found two minor haplotypes in GABBR1 to be positively associated with Heaviness of Smoking Index (HSI) in the EA sample. Finally, we demonstrated the presence of epistasis between GABBR1 and GABBR2 for developing ND. The variants of GABBR1 and GABBR2 are significantly associated with ND, and the involvement of GABBR1 is most likely through its interaction with GABBR2, whereas GABBR2 polymorphisms directly alter susceptibility to ND. Future studies are needed with more dense SNP coverage of GABBR1 and GABBR2 to verify the epistatic effects of the two subunit genes

    Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems

    Get PDF
    Background: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining wholegenome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. Conclusions: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources

    Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip

    Get PDF
    Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on FST outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions

    Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning

    Full text link
    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation

    Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA B Rs shapes inhibitory neurotransmission

    Get PDF
    Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABA B receptors (GABA B Rs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABA B R activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABA B Rs and extrasynaptic \uce-subunit-containing GABA A Rs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABA B R-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy
    corecore