1,377 research outputs found

    Studying the evolution of AGB stars in the Gaia epoch

    Get PDF
    We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning,i.e. 3.5M3.5M_{\odot}. Stars with mass below 3.5M3.5 M_{\odot} reach the C-star stage and eject into the interstellar medium gas enriched in carbon , nitrogen and 17O^{17}O. The higher mass counterparts evolve at large luminosities, between 3×104L3\times 10^4 L_{\odot} and 105L10^5 L_{\odot}. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of 12C^{12}C and 18O^{18}O. The comparison with the most recent results from other research groups are discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.Comment: 21 pages, 11 figure, 3 tables, accepted for publication in MNRAS (2016 July 11

    Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey

    Full text link
    The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of depth, angular size and number of measured galaxies among surveys of the distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep), 35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5, in addition to measuring accurately evolution in the properties of galaxies up to z~4. This paper concentrates on the main results obtained so far on galaxy clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm 0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The interplay of galaxy and structure evolution in producing this observation is discussed in some detail. Galaxy clustering is found to depend on galaxy luminosity also at z~ 1, but luminous galaxies at this redshift show a significantly steeper small-scale correlation function than their z=0 counterparts. Finally, red galaxies remain more clustered than blue galaxies out to similar redshifts, with a nearly constant relative bias among the two classes, b_{rel}~1.4, despite the rather dramatic evolution of the color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects in Astrophysics and Particle Physics", May 2006, proc. edited by F. Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori, Bologna

    Geometrical tests of cosmological models. III. The cosmology-evolution diagram at z=1

    Full text link
    The rotational velocity of distant galaxies, when interpreted as a size (luminosity) indicator, may be used as a tool to select high redshift standard rods (candles) and probe world models and galaxy evolution via the classical angular diameter-redshift or Hubble diagram tests. We implement the proposed testing strategy using a sample of 30 rotators spanning the redshift range 0.2<z<1 with high resolution spectra and images obtained by the VIMOS/VLT Deep Redshift Survey (VVDS) and the Great Observatories Origins Deep Survey (GOODs). We show that by applying at the same time the angular diameter-redshift and Hubble diagrams to the same sample of objects (i.e. velocity selected galactic discs) one can derive a characteristic chart, the cosmology-evolution diagram, mapping the relation between global cosmological parameters and local structural parameters of discs such as size and luminosity. This chart allows to put constraints on cosmological parameters when general prior information about discs evolution is available. In particular, by assuming that equally rotating large discs cannot be less luminous at z=1 than at present (M(z=1) < M(0)), we find that a flat matter dominated cosmology (Omega_m=1) is excluded at a confidence level of 2sigma and an open cosmology with low mass density (Omega_m = 0.3) and no dark energy contribution is excluded at a confidence level greater than 1 sigma. Inversely, by assuming prior knowledge about the cosmological model, the cosmology-evolution diagram can be used to gain useful insights about the redshift evolution of the structural parameters of baryonic discs hosted in dark matter halos of nearly equal masses.Comment: 14 pages and 11 figures. A&A in pres

    The Millennium Galaxy Catalogue: 16 < B_MGC < 24 galaxy counts and the calibration of the local galaxy luminosity function

    Full text link
    The Millennium Galaxy Catalogue (MGC) is a 37.5 deg^2, medium-deep, B-band imaging survey along the celestial equator, taken with the Wide Field Camera on the Isaac Newton Telescope. The survey region is contained within the regions of both the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey Early Data Release (SDSS-EDR). The survey has a uniform isophotal detection limit of 26 mag arcsec^-2 and it provides a robust, well-defined catalogue of stars and galaxies in the range 16 <= B_MGC < 24 mag. Here we describe the survey strategy, the photometric and astrometric calibration, source detection and analysis, and present the galaxy number counts that connect the bright and faint galaxy populations within a single survey. We argue that these counts represent the state of the art and use them to constrain the normalizations (phi*) of a number of recent estimates of the local galaxy luminosity function. We find that the 2dFGRS, SDSS Commissioning Data (CD), ESO Slice Project, Century Survey, Durham/UKST, Mt Stromlo/APM, SSRS2, and NOG luminosity functions require a revision of their published phi* values by factors of 1.05 +/- 0.05, 0.76 +/- 0.10, 1.02 +/- 0.22, 1.02 +/- 0.16, 1.16 +/- 0.28, 1.75 +/- 0.37, 1.40 +/- 0.26 and 1.01 +/- 0.39, respectively. After renormalizing the galaxy luminosity functions we find a mean local \bj luminosity density of j_{b_J} = (1.986 +/- 0.031) x 10^8 h L_{\odot} Mpc^-3.Comment: 20 pages, LaTeX, 20 Postscript figures (some low resolution), MNRAS, in press; considerably revised versio

    The VIMOS VLT Deep Survey: the group catalogue

    Get PDF
    [Abridged] We present a homogeneous and complete catalogue of optical groups identified in the purely flux limited (17.5<=I<=24.0) VIMOS-VLT Deep Survey (VVDS). We use mock catalogues extracted from the MILLENNIUM simulation, to correct for potential systematics that might affect the overall distribution as well as the individual properties of the identified systems. Simulated samples allow us to forecast the number and properties of groups that can be potentially found in a survey with VVDS-like selection functions. We use them to correct for the expected incompleteness and also to asses how well galaxy redshifts trace the line-of-sight velocity dispersion of the underlying mass overdensity. In particular, we train on these mock catalogues the adopted group-finding technique (the Voronoi-Delaunay Method, VDM). The goal is to fine-tune its free parameters, recover in a robust and unbiased way the redshift and velocity dispersion distributions of groups and maximize the level of completeness (C) and purity (P) of the group catalogue. We identify 318 VVDS groups with at least 2 members within 0.2<=z<=1.0, among which 144 (/30) with at least 3 (/5) members. The sample has globally C=60% and P=50%. Nearly 45% of the groups with at least 3 members are still recovered if we run the algorithm with a parameter set which maximizes P (75%). We exploit the group sample to study the redshift evolution of the fraction f_b of blue galaxies (U-B<=1) within 0.2<=z<=1. We find that f_b is significantly lower in groups than in the whole ensemble of galaxies irrespectively of their environment. These quantities increase with redshift, with f_b in groups showing a marginally significant steeper increase. We also confirm that, at any explored redshift, f_b decreases for increasing group richness, and we extend towards fainter luminosities the magnitude range over which this result holds.Comment: Submitted to A&A, revised version after referee comments, Table 5 adde

    The VIMOS VLT Deep Survey: The build-up of the colour-density relation

    Get PDF
    We investigate the redshift and luminosity evolution of the galaxy colour-density relation using the data from the First Epoch VIMOS-VLT Deep Survey (VVDS). The size (6582 galaxies), depth (I_AB<=24) and redshift sampling rate of the survey enable us to reconstruct the 3D galaxy environment on relatively local scales (R=5 Mpc) up to z~1.5. Particular attention has been devoted to calibrate a density reconstruction scheme, which factors out survey selection effects and reproduces in an unbiased way the underlying `real' galaxy environment. While at lower redshift we confirm the existence of a steep colour-density relation, with the fraction of the reddest(/bluest) galaxies of the same luminosity increasing(/decreasing) as a function of density, this trend progressively disappears in the highest redshift bins investigated. The rest frame u*-g' colour-magnitude diagram shows a bimodal pattern in both low and high density environments up to z~1.5. We find that the bimodal distribution is not universal but strongly depends upon environment: at lower redshifts the colour-magnitude diagrams in low and high density regions are significantly different while the progressive weakening of the colour-density relation causes the two bimodal distributions to nearly mirror each other in the highest redshift bin investigated. Both the colour-density and the colour-magnitude-density relations appear to be a transient, cumulative product of genetic and environmental factors operating over at least a period of 9 Gyr. These findings support an evolutionary scenario in which star formation/gas depletion processes are accelerated in more luminous objects and in high density environments: star formation activity is shifting with cosmic time towards lower luminosity (downsizing), and out of high density environments.Comment: 17 pages, 10 figures, figures added, accepted by A&

    The VIMOS Integral Field Unit: data reduction methods and quality assessment

    Get PDF
    With new generation spectrographs integral field spectroscopy is becoming a widely used observational technique. The Integral Field Unit of the VIsible Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as 54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting here the methods of the data processing software developed to extract the astrophysical signal of faint sources from the VIMOS IFU observations. We focus on the treatment of the fiber-to-fiber relative transmission and the sky subtraction, and the dedicated tasks we have built to address the peculiarities and unprecedented complexity of the dataset. We review the automated process we have developed under the VIPGI data organization and reduction environment (Scodeggio et al. 2005), along with the quality control performed to validate the process. The VIPGI-IFU data processing environment is available to the scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS

    The Vimos VLT Deep Survey: Global properties of 20000 galaxies in the I_AB<=22.5 WIDE survey

    Get PDF
    The VVDS-Wide survey has been designed with the general aim of tracing the large-scale distribution of galaxies at z~1 on comoving scales reaching ~100Mpc/h, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude I_AB=22.5, targeting four independent fields with size up to 4 sq.deg. each. The whole survey covers 8.6 sq.deg., here we present the general properties of the current redshift sample. This includes 32734 spectra in the four regions (19977 galaxies, 304 type I AGNs, and 9913 stars), covering a total area of 6.1 sq.deg, with a sampling rate of 22 to 24%. The redshift success rate is above 90% independently of magnitude. It is the currently largest area coverage among redshift surveys reaching z~1. We give the mean N(z) distribution averaged over 6.1 sq.deg. Comparing galaxy densities from the four fields shows that in a redshift bin Deltaz=0.1 at z~1 one still has factor-of-two variations over areas as large as ~0.25 sq.deg. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone, and is also in fairly good statistical agreement with that predicted by the Millennium mocks. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even ~1 sq.deg. size should be interpreted with caution. This paper accompanies the public release of the first 18143 redshifts of the VVDS-Wide survey from the 4 sq.deg. contiguous area of the F22 field at RA=22h, publicly available at http://cencosw.oamp.frComment: Accepted for publication on Astronomy & Astrophysic

    The Nearby Optical Galaxy Sample: The Local Galaxy Luminosity Function

    Get PDF
    In this paper we derive the galaxy luminosity function from the Nearby Optical Galaxy (NOG) sample, which is a nearly complete, magnitude-limited (B<14 mag), all-sky sample of nearby optical galaxies (~6400 galaxies with cz<5500 km/s). For this local sample, we use galaxy distance estimates based on different peculiar velocity models. Therefore, the derivation of the luminosity function is carried out using the locations of field and grouped galaxies in real distance space. The local field galaxy luminosity function in the B system is well described by a Schechter function. The exact values of the Schechter parameters slightly depend on the adopted peculiar velocity field models. The shape of the luminosity function of spiral galaxies does not differ significantly from that of E-S0 galaxies. On the other hand, the late-type spirals and irregulars have a very steeply rising luminosity function towards the faint end, whereas the ellipticals appreciably decrease in number towards low luminosities. The presence of galaxy systems in the NOG sample does not affect significantly the field galaxy luminosity function, since environmental effects on the total luminosity function appear to be marginal.Comment: 35 pages including 7 figures and 4 tables. Accepted for publication in Ap

    The VVDS data reduction pipeline: introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface

    Get PDF
    The VIMOS VLT Deep Survey (VVDS), designed to measure 150,000 galaxy redshifts, requires a dedicated data reduction and analysis pipeline to process in a timely fashion the large amount of spectroscopic data being produced. This requirement has lead to the development of the VIMOS Interactive Pipeline and Graphical Interface (VIPGI), a new software package designed to simplify to a very high degree the task of reducing astronomical data obtained with VIMOS, the imaging spectrograph built by the VIRMOS Consortium for the European Southern Observatory, and mounted on Unit 3 (Melipal) of the Very Large Telescope (VLT) at Paranal Observatory (Chile). VIPGI provides the astronomer with specially designed VIMOS data reduction functions, a VIMOS-centric data organizer, and dedicated data browsing and plotting tools, that can be used to verify the quality and accuracy of the various stages of the data reduction process. The quality and accuracy of the data reduction pipeline are comparable to those obtained using well known IRAF tasks, but the speed of the data reduction process is significantly increased, thanks to the large set of dedicated features. In this paper we discuss the details of the MOS data reduction pipeline implemented in VIPGI, as applied to the reduction of some 20,000 VVDS spectra, assessing quantitatively the accuracy of the various reduction steps. We also provide a more general overview of VIPGI capabilities, a tool that can be used for the reduction of any kind of VIMOS data.Comment: 10 pages, submitted to Astronomy and Astrophysic
    corecore