1,361 research outputs found
Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres
Origin and properties of non-Lorentzian spectral lines in linear chains of
nanospheres are discussed. The lines are shown to be super-exponentially narrow
with the characteristic width proportional to exp[-C(h/a)^3] where C is a
numerical constant, h the spacing between the nanospheres in the chain and a
the sphere radius. The fine structure of these spectral lines is also
investigated.Comment: 9 pages, 4 figure
On the Convergence of the Born Series in Optical Tomography with Diffuse Light
We provide a simple sufficient condition for convergence of Born series in
the forward problem of optical diffusion tomography. The condition does not
depend on the shape or spatial extent of the inhomogeneity but only on its
amplitude.Comment: 23 pages, 7 figures, submitted to Inverse Problem
Single-pulse dynamics and flow rates of inertial micropumps
Bubble-driven inertial pumps are a novel method of moving liquids through
microchannels. We combine high-speed imaging, computational fluid dynamics
(CFD) simulations and an effective one-dimensional model to study the
fundamentals of inertial pumping. For the first time, single-pulse transient
flow through U-shaped microchannels is imaged over the entire pump cycle with
4-microsecond temporal resolution. Observations confirm the fundamental N-shape
flow profile predicted earlier by theory and simulations. Experimental flow
rates are used to calibrate the CFD and one-dimensional models to extract an
effective bubble strength. Then the frequency dependence of inertial pumping is
studied both experimentally and numerically. The pump efficiency is found to
gradually decrease once the successive pulses start to overlap in time.Comment: 8 pages, 8 figure
Comment on "Optical Response of Strongly Coupled Nanopraticles in Dimer Arrays" (Phys. Rev. B 71(4), 045404, 2005)
I have re-calculated the extinction spectra of aggregates of two silver
nanospheres shown in Figs.~2 and 3 of Ref.~8. I have used the approximate
method of images according to Ref.~8 and an exact numerical technique. I have
found that the three sets of data (those I have obtained by the method of
images, the numerical results, and the results published in Ref.~8) do not
coincide. In this Comment, I discuss the reasons for these discrepancies and
the general applicability of the method of images to the quasi-static
electromagnetic problem of two interacting nanospheres.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Coherently tunable third-order nonlinearity in a nanojunction
A possibility of tuning the phase of the third-order Kerr-type nonlinear
susceptibility in a system consisting of two interacting metal nanospheres and
a nonlinearly polarizable molecule is investigated theoretically and
numerically. It is shown that by varying the relative inter-sphere separation,
it is possible to tune the phase of the effective nonlinear susceptibility
\chi^{(3)}(\omega;\omega,\omega,-\omega)2\pi$.Comment: 10 pages 5 figure
Propagation of Surface Plasmons in Ordered and Disordered Chains of Metal Nanospheres
We report a numerical investigation of surface plasmon (SP) propagation in
ordered and disordered linear chains of metal nanospheres. In our simulations,
SPs are excited at one end of a chain by a near-field tip. We then find
numerically the SP amplitude as a function of propagation distance. Two types
of SPs are discovered. The first SP, which we call the ordinary or quasistatic,
is mediated by short-range, near-field electromagnetic interaction in the
chain. This excitation is strongly affected by Ohmic losses in the metal and by
disorder in the chain. These two effects result in spatial decay of the
quasistatic SP by means of absorptive and radiative losses, respectively. The
second SP is mediated by longer range, far-field interaction of nanospheres. We
refer to this SP as the extraordinary or non-quasistatic. The non-quasistatic
SP can not be effectively excited by a near-field probe due to the small
integral weight of the associated spectral line. Because of that, at small
propagation distances, this SP is dominated by the quasistatic SP. However, the
non-quasistatic SP is affected by Ohmic and radiative losses to a much smaller
extent than the quasistatic one. Because of that, the non-quasistatic SP
becomes dominant sufficiently far from the exciting tip and can propagate with
little further losses of energy to remarkable distances. The unique physical
properties of the non-quasistatic SP can be utilized in all-optical integrated
photonic systems
Historical Evolution of theWave Resource and Energy Production off the Chilean Coast over the 20th Century
The wave energy resource in the Chilean coast shows particularly profitable characteristics for wave energy production, with relatively high mean wave power and low inter-annual resource variability. This combination is as interesting as unusual, since high energetic locations are usually also highly variable, such as the west coast of Ireland. Long-term wave resource variations are also an important aspect when designing wave energy converters (WECs), which are often neglected in resource assessment. The present paper studies the long-term resource variability of the Chilean coast, dividing the 20th century into five do-decades and analysing the variations between the different do-decades. To that end, the ERA20C reanalysis of the European Centre for Medium-Range Weather Forecasts is calibrated versus the ERA-Interim reanalysis and validated against buoy measurements collected in different points of the Chilean coast. Historical resource variations off the Chilean coast are compared to resource variations off the west coast in Ireland, showing a significantly more consistent wave resource. In addition, the impact of historical wave resource variations on a realistic WEC, similar to the Corpower device, is studied, comparing the results to those obtained off the west coast of Ireland. The annual power production off the Chilean coast is demonstrated to be remarkably more regular over the 20th century, with variations of just 1% between the different do-decades.The authors with the Centre for Ocean Energy Research in Maynooth University are supported by Science Foundation Ireland under Grant No. 13/IA/1886. It is also supported by grant CGL2016-76561-R, MINECO/ERDF, UE. Additional funding was received from the University of Basque Country (UPV/EHU, GIU17/002)
Bubble-Driven Inertial Micropump
The fundamental action of the bubble-driven inertial micropump is
investigated. The pump has no moving parts and consists of a thermal resistor
placed asymmetrically within a straight channel connecting two reservoirs.
Using numerical simulations, the net flow is studied as a function of channel
geometry, resistor location, vapor bubble strength, fluid viscosity, and
surface tension. Two major regimes of behavior are identified: axial and
non-axial. In the axial regime, the drive bubble either remains inside the
channel or continues to grow axially when it reaches the reservoir. In the
non-axial regime the bubble grows out of the channel and in all three
dimensions while inside the reservoir. The net flow in the axial regime is
parabolic with respect to the hydraulic diameter of the channel cross-section
but in the non-axial regime it is not. From numerical modeling, it is
determined that the net flow is maximal when the axial regime crosses over to
the non-axial regime. To elucidate the basic physical principles of the pump, a
phenomenological one-dimensional model is developed and solved. A linear array
of micropumps has been built using silicon-SU8 fabrication technology, and
semi-continuous pumping across a 2 mm-wide channel has been demonstrated
experimentally. Measured variation of the net flow with fluid viscosity is in
excellent agreement with simulation results.Comment: 18 pages, 18 figures, single colum
- …
