880 research outputs found

    Differential Imaging with a Multicolor Detector Assembly: A New ExoPlanet Finder Concept

    Full text link
    Simultaneous spectral differential imaging is a high contrast technique by which subtraction of simultaneous images reduces noise from atmospheric speckles and optical aberrations. Small non-common wave front errors between channels can seriously degrade its performance. We present a new concept, a multicolor detector assembly (MCDA), which can eliminate this problem. The device consists of an infrared detector and a microlens array onto the flat side of which a checkerboard pattern of narrow-band micro-filters is deposited, each micro-filter coinciding with a microlens. Practical considerations for successful implementation of the technique are mentioned. Numerical simulations predict a noise attenuation of 10^-3 at 0.5" for a 10^5 seconds integration on a mH=5 star of Strehl ratio 0.9 taken with an 8-m telescope. This reaches a contrast of 10^-7 at an angular distance of 0.5" from the center of the star image.Comment: 13 pages, 5 figures, accepted APJ

    Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Full text link
    Angular differential imaging is a high-contrast imaging technique that reduces quasi-static speckle noise and facilitates the detection of nearby companions. A sequence of images is acquired with an altitude/azimuth telescope while the instrument field derotator is switched off. This keeps the instrument and telescope optics aligned and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF is constructed from other appropriately-selected images of the same sequence and subtracted to remove quasi-static PSF structure. All residual images are then rotated to align the field and are combined. Observed performances are reported for Gemini North data. It is shown that quasi-static PSF noise can be reduced by a factor \~5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of acquired images. A total speckle noise attenuation of 20-50 is obtained for one-hour long observing sequences compared to a single 30s exposure. A PSF noise attenuation of 100 was achieved for two-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise than a classical observation technique. The ADI technique can be used with currently available instruments to search for ~1MJup exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap

    Effects of Quasi-Static Aberrations in Faint Companion Searches

    Get PDF
    We present the first results obtained at CFHT with the TRIDENT infrared camera, dedicated to the detection of faint companions close to bright nearby stars. The camera's main feature is the acquisition of three simultaneous images in three wavelengths (simultaneous differential imaging) across the methane absorption bandhead at 1.6 micron, that enables a precise subtraction of the primary star PSF while keeping the companion signal. The main limitation is non-common path aberrations between the three optical paths that slightly decorrelate the PSFs. Two types of PSF calibrations are combined with the differential simultaneous imaging technique to further attenuate the PSF: reference star subtraction and instrument rotation to smooth aberrations. It is shown that a faint companion with a DeltaH of 10 magnitudes would be detected at 0.5 arcsec from the primary.Comment: 12 pages, 10 figures, to appear in Astronomy with High Contrast Imaging, EAS Publications Serie

    Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations

    Get PDF
    We recently reported on the detection of a possible planetary-mass companion to Beta Pictoris at a projected separation of 8 AU from the star, using data taken in November 2003 with NaCo, the adaptive-optics system installed on the Very Large Telescope UT4. Eventhough no second epoch detection was available, there are strong arguments to favor a gravitationally bound companion rather than a background object. If confirmed and located at a physical separation of 8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be the closest planet to its star ever imaged, could be formed via core-accretion, and could explain the main morphological and dynamical properties of the dust disk. Our goal was to return to Beta Pic five years later to obtain a second-epoch observation of the companion or, in case of a non-detection, constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with NaCo in January and February 2009. We also use 4QPM data taken in November 2004. No point-like signal with the brightness of the companion candidate (apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances down to 6.5 AU from the star in the 2009 data. As expected, the non-detection does not allow to rule out a background object; however, we show that it is consistent with the orbital motion of a bound companion that got closer to the star since first observed in 2003 and that is just emerging from behind the star at the present epoch. We place strong constraints on the possible orbits of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy and Astrophysic

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    Morphology of the very inclined debris disk around HD 32297

    Get PDF
    Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that bring constraints on their properties, in particular the spatial distribution of dust. New techniques combining observing strategy and data processing now allow very high contrast imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and complement space telescopes while improving angular resolution at near infrared wavelengths. We carried out a program at the VLT with NACO to image known debris disks with higher angular resolution in the near IR than ever before in order to study morphological properties and ultimately to detect signpost of planets. The observing method makes use of advanced techniques: Adaptive Optics, Coronagraphy and Differential Imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" like GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects like circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence to bring constraints on the morphology of debris disks. From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6". The modeling stage confirms a very high inclination (i=88{\deg}) and the presence of an inner cavity inside r_0~110AU. We also found that the spine (line of maximum intensity along the midplane) of the disk is curved and we attributed this feature to a large anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged ...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    Photometric characterization of exoplanets using angular and spectral differential imaging

    Full text link
    The direct detection of exoplanets has been the subject of intensive research in the recent years. Data obtained with future high-contrast imaging instruments optimized for giant planets direct detection are strongly limited by the speckle noise. Specific observing strategies and data analysis methods, such as angular and spectral differential imaging, are required to attenuate the noise level and possibly detect the faint planet flux. Even though these methods are very efficient at suppressing the speckles, the photometry of the faint planets is dominated by the speckle residuals. The determination of the effective temperature and surface gravity of the detected planets from photometric measurements in different bands is then limited by the photometric error on the planet flux. In this work we investigate this photometric error and the consequences on the determination of the physical parameters of the detected planets. We perform detailed end-to-end simulation with the CAOS-based Software Package for SPHERE to obtain realistic data representing typical observing sequences in Y, J, H and Ks bands with a high contrast imager. The simulated data are used to measure the photometric accuracy as a function of contrast for planets detected with angular and spectral+angular differential methods. We apply this empirical accuracy to study the characterization capabilities of a high-contrast differential imager. We show that the expected photometric performances will allow the detection and characterization of exoplanets down to the Jupiter mass at angular separations of 1.0" and 0.2" respectively around high mass and low mass stars with 2 observations in different filter pairs. We also show that the determination of the planets physical parameters from photometric measurements in different filter pairs is essentialy limited by the error on the determination of the surface gravity.Comment: 13 pages, 7 figures, 4 tables. Accepted for publication in MNRA

    Imaging faint brown dwarf companions close to bright stars with a small, well-corrected telescope aperture

    Get PDF
    We have used our 1.6 m diameter off-axis well-corrected sub-aperture (WCS) on the Palomar Hale telescope in concert with a small inner-working-angle (IWA) phase-mask coronagraph to image the immediate environs of a small number of nearby stars. Test cases included three stars (HD 130948, HD 49197 and HR7672) with known brown dwarf companions at small separations, all of which were detected. We also present the initial detection of a new object close to the nearby young G0V star HD171488. Follow up observations are needed to determine if this object is a bona fide companion, but its flux is consistent with the flux of a young brown dwarf or low mass M star at the same distance as the primary. Interestingly, at small angles our WCS coronagraph demonstrates a limiting detectable contrast comparable to that of extant Lyot coronagraphs on much larger telescopes corrected with current-generation AO systems. This suggests that small apertures corrected to extreme adaptive optics (ExAO) levels can be used to carry out initial surveys for close brown dwarf and stellar companions, leaving followup observations for larger telescopes.Comment: accepted for publication in the Astrophysical Journa

    Confidence Level and Sensitivity Limits in High Contrast Imaging

    Full text link
    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3*10^-7 confidence level detection threshold when averaging a partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap
    corecore