28,397 research outputs found

    Simulating accelerated atoms coupled to a quantum field

    Get PDF
    We show an analogy between static quantum emitters coupled to a single mode of a quantum field and accelerated Unruh-DeWitt detectors. We envision a way to simulate a variety of relativistic quantum field settings beyond the reach of current computational power, such as high number of qubits coupled to a quantum field following arbitrary non-inertial trajectories. Our scheme may be implemented with trapped ions and circuit QED set-ups.Comment: 5 pages, 2 figures, revtex 4-

    Performance and Safety of Lithium-ion Capacitors

    Get PDF
    Lithium-ion capacitors (LIC) are a recent innovation in the area of supercapacitors and ultracapacitors. With an operating voltage range similar to that of lithium-ion batteries and a very low selfdischarge rate, these can be readily used in the place of batteries especially when large currents are required to be stored safely for use at a later time

    A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis

    Full text link
    We introduce a comprehensive analysis of multi-epoch stellar line-of-sight velocities to determine the intrinsic velocity dispersion of the ultrafaint satellites of the Milky Way. Our method includes a simultaneous Bayesian analysis of both membership probabilities and the contribution of binary orbital motion to the observed velocity dispersion within a 14-parameter likelihood. We apply our method to the Segue 1 dwarf galaxy and conclude that Segue 1 is a dark-matter-dominated galaxy at high probability with an intrinsic velocity dispersion of 3.7^{+1.4}_{-1.1} km/sec. The dark matter halo required to produce this dispersion must have an average density of 2.5^{+4.1}_{-1.9} solar mass/pc^3 within a sphere that encloses half the galaxy's stellar luminosity. This is the highest measured density of dark matter in the Local Group. Our results show that a significant fraction of the stars in Segue 1 may be binaries with the most probable mean period close to 10 years, but also consistent with the 180 year mean period seen in the solar vicinity at about 1 sigma. Despite this binary population, the possibility that Segue 1 is a bound star cluster with the observed velocity dispersion arising from the orbital motion of binary stars is disfavored by the multi-epoch stellar velocity data at greater than 99% C.L. Finally, our treatment yields a projected (two-dimensional) half-light radius for the stellar profile of Segue 1 of 28^{+5}_{-4} pc, in excellent agreement with photometric measurements.Comment: 15 pages, 19 figure

    Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Get PDF
    We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic

    Voltage dip generator for testing wind turbines connected to electrical networks

    Get PDF
    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time–voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    A global descriptor of spatial pattern interaction in the galaxy distribution

    Full text link
    We present the function J as a morphological descriptor for point patterns formed by the distribution of galaxies in the Universe. This function was recently introduced in the field of spatial statistics, and is based on the nearest neighbor distribution and the void probability function. The J descriptor allows to distinguish clustered (i.e. correlated) from ``regular'' (i.e. anti-correlated) point distributions. We outline the theoretical foundations of the method, perform tests with a Matern cluster process as an idealised model of galaxy clustering, and apply the descriptor to galaxies and loose groups in the Perseus-Pisces Survey. A comparison with mock-samples extracted from a mixed dark matter simulation shows that the J descriptor can be profitably used to constrain (in this case reject) viable models of cosmic structure formation.Comment: Significantly enhanced version, 14 pages, LaTeX using epsf, aaspp4, 7 eps-figures, accepted for publication in the Astrophysical Journa
    corecore