33 research outputs found
Bayou virus-associated hantavirus pulmonary syndrome in Eastern Texas: identification of the rice rat, Oryzomys palustris, as reservoir host.
We describe the third known case of hantavirus pulmonary syndrome (HPS) due to Bayou virus, from Jefferson County, Texas. By using molecular epidemiologic methods, we show that rice rats (Oryzomys palustris) are frequently infected with Bayou virus and that viral RNA sequences from HPS patients are similar to those from nearby rice rats. Bayou virus is associated with O. palustris; this rodent appears to be its predominant reservoir host
DNA methylation testing with S5 for triage of high-risk HPV positive women
Methylation of host and viral genes is promising for triage of women with high‐risk human papillomavirus infections (hrHPV). Using a population‐based sample of hrHPV positive women with cervical biopsies within 12 months after cervical screening, the clinical value of the S5 methylation classifier (S5), HPV genotyping and cytology were compared as potential triage tests, for outcomes of cervical intraepithelial neoplasia (CIN) grade 3 or greater (CIN3+), CIN2+ and CIN2, and the area under the curve (AUC) calculated. S5 scores increased with histopathology severity (P (trend) < .001). For CIN3+, the AUC was 0.780 suggesting S5 provides good discrimination between <CIN3 and CIN3+. AUCs were significant for all pairwise comparisons of <CIN2, CIN2 and CIN3+ (P < .001). The positive predictive value (PPV) of HPV16/18 genotyping for women with any abnormal cytology was greater than S5 (25.36% vs 20.87%, P = .005) for CIN3+, while sensitivity was substantially greater for S5 (83.33% vs 59.28%, P < .001). Restricting to women with abnormal cytology, but excluding those with high‐grade cytology, both S5 and HPV16/18 provided CIN3+ PPVs high enough to recommend colposcopy. Triage with S5 also appeared useful for hrHPV positive women negative for HPV16/18 (CIN3+ PPV: 7.33%, sensitivity: 57.52%). S5 provided increased sensitivity for CIN3+ compared to HPV16/18 genotyping for hrHPV positive women, overall and when restricted to women with abnormal cytology, suggesting S5 may improve colposcopy referral. S5 also has the ability to distinguish between <CIN2, CIN2 and CIN3+, a finding of importance for managing CIN2, given the complexity and uncertainty associated with this diagnosis
Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America.
The 1993 outbreak of hantavirus pulmonary syndrome (HPS) in the southwestern United States was associated with Sin Nombre virus, a rodent-borne hantavirus; The virus' primary reservoir is the deer mouse (Peromyscus maniculatus). Hantavirus-infected rodents were identified in various regions of North America. An extensive nucleotide sequence database of an 139 bp fragment amplified from virus M genomic segments was generated. Phylogenetic analysis confirmed that SNV-like hantaviruses are widely distributed in Peromyscus species rodents throughout North America. Classic SNV is the major cause of HPS in North America, but other Peromyscine-borne hantaviruses, e.g., New York and Monongahela viruses, are also associated with HPS cases. Although genetically diverse, SNV-like viruses have slowly coevolved with their rodent hosts. We show that the genetic relationships of hantaviruses in the Americas are complex, most likely as a result of the rapid radiation and speciation of New World sigmodontine rodents and occasional virus-host switching events
A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles
BACKGROUND: Following the success of the malaria control intervention on the island of Bioko, malaria control by the use of indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLITN) was extended to Rio Muni, on the mainland part of Equatorial Guinea. This manuscript reports on the malaria vectors present and the incidence of insecticide resistant alleles prior to the onset of the programme. METHODS: Anopheles mosquitoes were captured daily using window traps at 30 sentinel sites in Rio Muni, from December 2006 to July 2007. The mosquitoes were identified to species and their sporozoite rates, knockdown resistance (kdr) and acetylcholinesterase (AChE) sensitivity measured, to define the role of vector species in malaria transmission and their potential susceptibility to insecticides. RESULTS: A total of 6,162 Anopheles mosquitoes were collected of which 4,808 were morphologically identified as Anopheles gambiae s.l., 120 Anopheles funestus, 1,069 Anopheles moucheti, and 165 Anopheles nili s.l.. Both M and S molecular forms of Anopheles gambiae s.s. and Anopheles melas were identified. Anopheles ovengensis and Anopheles carnevalei were the only two members of the An. nili group to be identified. Using the species-specific sporozoite rates and the average number of mosquitoes per night, the number of infective mosquitoes per trap per 100 nights for each species complex was calculated as a measure of transmission risk. Both kdr-w and kdr-e alleles were present in the S-form of An. gambiae s.s. (59% and 19% respectively) and at much lower frequencies in the M-form (9.7% and 1.8% respectively). The kdr-w and kdr-e alleles co-occurred in 103 S-form and 1 M-form specimens. No insensitive AChE was detected. CONCLUSION: Anopheles gambiae s.s, a member of the Anopheles gambiae complex was shown to be the major vector in Rio Muni with the other three groups playing a relatively minor role in transmission. The demonstration of a high frequency of kdr alleles in mosquito populations before the onset of a malaria control programme shows that continuous entomological surveillance including resistance monitoring will be of critical importance to ensure the chosen insecticide remains effective
Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso
<p>Abstract</p> <p>Background</p> <p>Insecticide resistance of the main malaria vector, <it>Anopheles gambiae</it>, has been reported in south-western Burkina Faso, West Africa. Cross-resistance to DDT and pyrethroids was conferred by alterations at site of action in the sodium channel, the Leu-Phe <it>kdr </it>mutation; resistance to organophosphates and carbamates resulted from a single point mutation in the oxyanion hole of the acetylcholinesterase enzyme designed as <it>ace-1</it><sup><it>R</it></sup>.</p> <p>Methods</p> <p>An entomological survey was carried out during the rainy season of 2005 at Vallée du Kou, a rice growing area in south-western Burkina Faso. At the Vallée du Kou, both insecticide resistance mechanisms have been previously described in the M and S molecular forms of <it>An. gambiae</it>. This survey aimed i) to update the temporal dynamics and the circumsporozoite infection rate of the two molecular forms M and S of <it>An. gambiae </it>ii) to update the frequency of the Leu-Phe <it>kdr </it>mutation within these forms and finally iii) to investigate the occurrence of the <it>ace-1</it><sup><it>R </it></sup>mutation.</p> <p>Mosquitoes collected by indoor residual collection and by human landing catches were counted and morphologically identified. Species and molecular forms of <it>An. gambiae</it>, <it>ace-1</it><sup><it>R </it></sup>and Leu-Phe <it>kdr </it>mutations were determined using PCR techniques. The presence of the circumsporozoite protein of <it>Plasmodium falciparum </it>was determined using ELISA.</p> <p>Results</p> <p><it>Anopheles gambiae </it>populations were dominated by the M form. However the S form occurred in relative important proportion towards the end of the rainy season with a maximum peak in October at 51%. Sporozoite rates were similar in both forms. The frequency of the Leu-Phe <it>kdr </it>mutation in the S form reached a fixation level while it is still spreading in the M form. Furthermore, the <it>ace</it>-<it>1</it><sup><it>R </it></sup>mutation prevailed predominately in the S form and has just started spreading in the M form. The two mutations occurred concomitantly both in M and S populations.</p> <p>Conclusion</p> <p>These results showed that the Vallée du Kou, a rice growing area formerly occupied mainly by M susceptible populations, is progressively colonized by S resistant populations living in sympatry with the former. As a result, the distribution pattern of insecticide resistance mutations shows the occurrence of both resistance mechanisms concomitantly in the same populations. The impact of multiple resistance mechanisms in M and S populations of <it>An. gambiae </it>on vector control measures against malaria transmission, such as insecticide-treated nets (ITNs) and indoor residual spraying (IRS), in this area is discussed.</p
Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia
Background: Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca.\ud
Methods: Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined.\ud
Results: The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus\ud
andAnopheles vagus. The 1014F allele was not found in the other areas.\ud
Conclusion: The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are neede
Kdr-based insecticide resistance in Anopheles gambiae s.s populations in
<p>Abstract</p> <p>Background</p> <p>The spread of insecticide resistance in the malaria mosquito, <it>Anopheles gambiae </it>is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S<sub>6 </sub>transmembrane segment of domain II in the voltage gated sodium channel, known as <it>kdr </it>(<it>knockdown resistance</it>) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the <it>kdr </it>alleles in wild <it>Anopheles gambiae </it>populations in Cameroon.</p> <p>Results</p> <p>A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as <it>An. gambiae </it>(N = 1,248; 88.8%), <it>An. arabiensis </it>(N = 120; 8.5%) and <it>An. melas </it>(N = 37; 2.6%). Both <it>kdr </it>alleles 1014F and 1014S were identified in the M and S molecular forms of <it>An. gambiae </it>s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant <it>kdr </it>alleles.</p> <p>Conclusion</p> <p>This study provides an updated distribution map of the <it>kdr </it>alleles in wild <it>An. gambiae </it>populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.</p
IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic
AIMS: This international study aimed to assess: 1) the prevalence of preoperative and postoperative COVID-19 among patients with hip fracture, 2) the effect on 30-day mortality, and 3) clinical factors associated with the infection and with mortality in COVID-19-positive patients. METHODS: A multicentre collaboration among 112 centres in 14 countries collected data on all patients presenting with a hip fracture between 1(st) March-31(st) May 2020. Demographics, residence, place of injury, presentation blood tests, Nottingham Hip Fracture Score, time to surgery, management, ASA grade, length of stay, COVID-19 and 30-day mortality status were recorded. RESULTS: A total of 7090 patients were included, with a mean age of 82.2 (range 50-104) years and 4959 (70%) being female. Of 651 (9.2%) patients diagnosed with COVID-19, 225 (34.6%) were positive at presentation and 426 (65.4%) became positive postoperatively. Positive COVID-19 status was independently associated with male sex (odds ratio (OR) 1.38, p=0.001), residential care (OR 2.15, p<0.001), inpatient fall (OR 2.23, p=0.003), cancer (OR 0.63, p=0.009), ASA grade 4-5 (OR 1.59, p=0.008; OR 8.28, p<0.001), and longer admission (OR 1.06 for each increasing day, p<0.001). Patients with COVID-19 at any time had a significantly lower chance of 30-day survival versus those without COVID-19 (72.7% versus 92.6%, p<0.001). COVID-19 was independently associated with an increased 30-day mortality risk (hazard ratio (HR) 2.83, p<0.001). Increasing age (HR 1.03, p=0.028), male sex (HR 2.35, p<0.001), renal disease (HR 1.53, p=0.017), and pulmonary disease (HR 1.45, p=0.039) were independently associated with a higher 30-day mortality risk in patients with COVID-19 when adjusting for confounders. CONCLUSION: The prevalence of COVID-19 in hip fracture patients during the first wave of the pandemic was 9%, and was independently associated with a three-fold increased 30-day mortality risk. Among COVID-19-positive patients, those who were older, male, with renal or pulmonary disease had a significantly higher mortality risk
