13,732 research outputs found

    Package of facts and theorems for efficiently generating entanglement criteria for many qubits

    Full text link
    We present a package of mathematical theorems, which allow to construct multipartite entanglement criteria. Importantly, establishing bounds for certain classes of entanglement does not take an optimization over continuous sets of states. These bonds are found from the properties of commutativity graphs of operators used in the criterion. We present two examples of criteria constructed according to our method. One of them detects genuine 5-qubit entanglement without ever referring to correlations between all five qubits.Comment: 5 pages, 4 figure

    Coupled Breathing Oscillations of Two-Component Fermion Condensates in Deformed Traps

    Full text link
    We investigate collective excitations coupled with monopole and quadrupole oscillations in two-component fermion condensates in deformed traps. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. When the trap is largely deformed, these collective motions are decoupled to the transverse and longitudinal breathing oscillation modes. As the trap approaches becoming spherical, however, they are coupled and show complicated behaviors.Comment: 18 pages and 8 figure

    Quantum Molecular Dynamics Approach to the Nuclear Matter Below the Saturation Density

    Get PDF
    Quantum molecular dynamics is applied to study the ground state properties of nuclear matter at subsaturation densities. Clustering effects are observed as to soften the equation of state at these densities. The structure of nuclear matter at subsaturation density shows some exotic shapes with variation of the density.Comment: 21 pages of Latex (revtex), 9 Postscript figure

    Semistability vs. nefness for (Higgs) vector bundles

    Full text link
    According to Miyaoka, a vector bundle E on a smooth projective curve is semistable if and only if a certain numerical class in the projectivized bundle PE is nef. We establish a similar criterion for the semistability of Higgs bundles: namely, such a bundle is semistable if and only if for every integer s between 0 and the rank of E, a suitable numerical class in the scheme parametrizing the rank s locally-free Higgs quotients of E is nef. We also extend this result to higher-dimensional complex projective varieties by showing that the nefness of the above mentioned classes is equivalent to the semistability of the Higgs bundle E together with the vanishing of the discriminant of E.Comment: Comments: 20 pages, Latex2e, no figures. v2 includes a generalization to complex projective manifolds of any dimension. To appear in Diff. Geom. App

    Online Pattern Matching for String Edit Distance with Moves

    Full text link
    Edit distance with moves (EDM) is a string-to-string distance measure that includes substring moves in addition to ordinal editing operations to turn one string to the other. Although optimizing EDM is intractable, it has many applications especially in error detections. Edit sensitive parsing (ESP) is an efficient parsing algorithm that guarantees an upper bound of parsing discrepancies between different appearances of the same substrings in a string. ESP can be used for computing an approximate EDM as the L1 distance between characteristic vectors built by node labels in parsing trees. However, ESP is not applicable to a streaming text data where a whole text is unknown in advance. We present an online ESP (OESP) that enables an online pattern matching for EDM. OESP builds a parse tree for a streaming text and computes the L1 distance between characteristic vectors in an online manner. For the space-efficient computation of EDM, OESP directly encodes the parse tree into a succinct representation by leveraging the idea behind recent results of a dynamic succinct tree. We experimentally test OESP on the ability to compute EDM in an online manner on benchmark datasets, and we show OESP's efficiency.Comment: This paper has been accepted to the 21st edition of the International Symposium on String Processing and Information Retrieval (SPIRE2014

    Superconductivity without Local Inversion Symmetry; Multi-layer Systems

    Full text link
    While multi-layer systems can possess global inversion centers, they can have regions with locally broken inversion symmetry. This can modify the superconducting properties of such a system. Here we analyze two dimensional multi-layer systems yielding spatially modulated antisymmetric spin-orbit coupling (ASOC) and discuss superconductivity with mixed parity order parameters. In particular, the influence of ASOC on the spin susceptibility is investigated at zero temperature. For weak inter-layer coupling we find an enhanced spin susceptibility induced by ASOC, which hints the potential importance of this aspect for superconducting phase in specially structured superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference on Low Temperature Physics (LT26

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    Change in the magnetic structure of (Bi,Sm)FeO3 thin films at the morphotropic phase boundary probed by neutron diffraction

    Get PDF
    We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices
    corecore