248 research outputs found

    Spectral up- and downshifting of Akhmediev breathers under wind forcing

    Full text link
    We experimentally and numerically investigate the effect of wind forcing on the spectral dynamics of Akhmediev breathers, a wave-type known to model the modulation instability. We develop the wind model to the same order in steepness as the higher order modifcation of the nonlinear Schroedinger equation, also referred to as the Dysthe equation. This results in an asymmetric wind term in the higher order, in addition to the leading order wind forcing term. The derived model is in good agreement with laboratory experiments within the range of the facility's length. We show that the leading order forcing term amplifies all frequencies equally and therefore induces only a broadening of the spectrum while the asymmetric higher order term in the model enhances higher frequencies more than lower ones. Thus, the latter term induces a permanent upshift of the spectral mean. On the other hand, in contrast to the direct effect of wind forcing, wind can indirectly lead to frequency downshifts, due to dissipative effects such as wave breaking, or through amplification of the intrinsic spectral asymmetry of the Dysthe equation. Furthermore, the definitions of the up- and downshift in terms of peak- and mean frequencies, that are critical to relate our work to previous results, are highlighted and discussed.Comment: 30 pages, 11 figure

    Bionic models for identification of biological systems

    Get PDF
    This article proposes a clinical decision support system that processes biomedical data. For this purpose a bionic model has been designed based on neural networks, genetic algorithms and immune systems. The developed system has been tested on data from pregnant women. The paper focuses on the approach to enable selection of control actions that can minimize the risk of adverse outcome. The control actions (hyperparameters of a new type) are further used as an additional input signal. Its values are defined by a hyperparameter optimization method. A software developed with Python is briefly described

    Generalized Hartree-Fock Theory for Interacting Fermions in Lattices: Numerical Methods

    Full text link
    We present numerical methods to solve the Generalized Hartree-Fock theory for fermionic systems in lattices, both in thermal equilibrium and out of equilibrium. Specifically, we show how to determine the covariance matrix corresponding to the Fermionic Gaussian state that optimally approximates the quantum state of the fermions. The methods apply to relatively large systems, since their complexity only scales quadratically with the number of lattice sites. Moreover, they are specially suited to describe inhomogenous systems, as those typically found in recent experiments with atoms in optical lattices, at least in the weak interaction regime. As a benchmark, we have applied them to the two-dimensional Hubbard model on a 10x10 lattice with and without an external confinement.Comment: 16 pages, 22 figure

    Stamp transferred suspended graphene mechanical resonators for radio-frequency electrical readout

    Full text link
    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio-frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f=5-6 GHz producing modulation sidebands at f +/- fm. A mechanical resonance frequency up to fm=178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples, and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of DC bias voltage Vdc indicate that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large Vdc

    Microwave amplification with nanomechanical resonators

    Full text link
    Sensitive measurement of electrical signals is at the heart of modern science and technology. According to quantum mechanics, any detector or amplifier is required to add a certain amount of noise to the signal, equaling at best the energy of quantum fluctuations. The quantum limit of added noise has nearly been reached with superconducting devices which take advantage of nonlinearities in Josephson junctions. Here, we introduce a new paradigm of amplification of microwave signals with the help of a mechanical oscillator. By relying on the radiation pressure force on a nanomechanical resonator, we provide an experimental demonstration and an analytical description of how the injection of microwaves induces coherent stimulated emission and signal amplification. This scheme, based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices, and, at the same time, has a high potential to reach quantum limited operation. With a measured signal amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave amplification is feasible in various applications involving integrated electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main text), 18 pages, 6 figures (supplementary information

    Control of microwave signals using circuit nano-electromechanics

    Full text link
    Waveguide resonators are crucial elements in sensitive astrophysical detectors [1] and circuit quantum electrodynamics (cQED) [2]. Coupled to artificial atoms in the form of superconducting qubits [3, 4], they now provide a technologically promising and scalable platform for quantum information processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13] or mechanical oscillators [14, 15] has been explored to realize hybrid systems with extended functionality. Here, we couple a superconducting coplanar waveguide resonator to a nano-coshmechanical oscillator, and demonstrate all-microwave field controlled slowing, advancing and switching of microwave signals. This is enabled by utilizing electromechanically induced transparency [16-18], an effect analogous to electromagnetically induced transparency (EIT) in atomic physics [19]. The exquisite temporal control gained over this phenomenon provides a route towards realizing advanced protocols for storage of both classical and quantum microwave signals [20-22], extending the toolbox of control techniques of the microwave field.Comment: 9 figure

    Collision of one dimensional (1D) spin polarized Fermi gases in an optical lattice

    Get PDF
    In this work we analyze the dynamical behavior of the collision between two clouds of fermionic atoms with opposite spin polarization. By means of the time-evolving block decimation (TEBD) numerical method, we simulate the collision of two one-dimensional clouds in a lattice. There is a symmetry in the collision behaviour between the attractive and repulsive interactions. We analyze the pair formation dynamics in the collision region, providing a quantitative analysis of the pair formation mechanism in terms of a simple two-site model

    Assessing Readability of Online Patient Education Materials for Spine Surgery Procedures

    Get PDF
    Increased patient reliance on Internet-based health information has amplified the need for comprehensible online patient education articles. As suggested by the AMA and NIH, spine fusion articles should be between a 4th and 6th grade readability level to increase patient comprehension, which may contribute to improved postoperative outcomes. Objective: To determine the average readability level of online healthcare education information relating to anterior cervical discectomy and fusion (ACDF) and lumbar fusion procedures. Design: Online Health-Education Resource Qualitative Analysis. Setting: Rush University Medical Center - Department of Orthopaedic Surgery. Methods: Three popular search engines were utilized to access patient education articles for common cervical and lumbar spine procedures. Relevant articles were analyzed for readability using Readability Studio Professional Edition software (Oleander Software, Ltd). Articles were stratified by organization type as follows: General Medical Websites (GMW), Healthcare Network/Academic Institutions (HNAI), and Private Practices (PP). Thirteen common readability tests were performed with the mean grade level for each readability test compared between subgroups using ANOVA analysis. Results: 79 ACDF and 231 lumbar fusion articles were determined to have a mean readability level of 10.7 ± 1.5 and 11.3 ± 1.6, respectively. GMW, HNAI, and PP subgroups had mean readability levels of 10.9 ± 2.9, 10.7 ± 2.8, and 10.7 ± 2.5 for ACDF and 10.9 ± 3.0, 10.8 ± 2.9, and 11.6 ± 2.7 for lumbar fusion articles. Of 310 total articles, only 6 (3 ACDF and 3 lumbar fusion) were written below the 7th grade reading level. Conclusions: Current online literature from medical websites containing information regarding ACDF and lumbar fusion procedures are written at a grade level higher than the suggested guidelines. Therefore, current patient education articles should be revised to accommodate the average readability level in the United States and may result in improved patient comprehension and postoperative outcomes
    corecore