91 research outputs found

    Health related quality of life outcomes in HIV-Infected patients starting different combination regimens in a randomised multinational trial: the INITIO-QoL Substudy

    Get PDF
    The health-related quality of life (HRQoL) outcomes in HIV-infected, treatment-naive patients starting different HAART regimens in a 3-year, randomized, multinational trial were compared. HRQoL was measured in a subgroup of patients enrolled in the INITIO study (153/911), using a modified version of the MOS-HIV questionnaire. The regimens compared in the INITIO trial were composed by two NRTIs (didanosine + stavudine) plus either an NNRTI (efavirenz) or a PI (nelfinavir), or both (efavirenz + nelfinavir). Primary HRQoL outcomes were Physical and Mental Health Summary scores (PHS and MHS, respectively). During follow-up, an increase of PHS score was observed in all treatment arms. The MHS score remained substantially unchanged with the four-drug combination and showed with both NNRTI- and PI-based three-drug regimens a marked trend toward improvement, which became statistically significant when a multiple imputation method was used to adjust for missing data. Overall, starting all the combination regimens compared in the INITIO study was associated with a maintained or slightly improved HRQOL status, consistently with the positive immunological and virological changes observed in the main study. The observed differences in the MHS indicate a possible HRQoL benefit associated to the use of three-drug, two-class regimens and no additional benefit for the use of four-drug, three-class regimens, confirming that three-drug, two-class regimens that include two NRTIs plus either an NNRTI or a PI should be preferred as initial treatment of HIV infection

    Functionalization of cotton fabrics with polycaprolactone nanoparticles for transdermal release of melatonin

    Get PDF
    Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL) nanoparticles (NPs) by employing flash nanoprecipitation (FNP) technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE%) and loading capacity (LC%). An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC) analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz’s cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker–Lonsdale model

    Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles

    Get PDF
    In recent years transdermal drug delivery has aroused significant interest as a sustained and non-invasive way of administering active substances. The development of nanotechnology allowed the development of novel pharmaceutical formulations overcoming skin barrier. Furthermore, such nano-system can be combined with conventional fabrics to pave the way to a new generation of wearable drug delivery devices: bio-functional garments. First the NP were produced by flash nanoprecipitation technique (FNP), the production process was optimized to produce particles with suitable size for transdermal applications. The nanoparticles were characterized in terms of drug content by UV-visible spectroscopy and in terms of antioxidant activity by Electron Paramagnetic Resonance spectroscopy (EPR) coupled with spin trapping technique. The NPs were used to functionalize cotton and viscose-micromodal fabrics and the transdermal release properties were tested in vitro by Franz’s Cell experiment. FNP was proven to be an effective technique to produce tunable size particles. Moreover, the nanoencapsulated drug exhibited antioxidant activity. The release test evidenced a controlled release behavior effect providing evidence that the bio-functional textile is suitable for applications where sustained release and antioxidant properties are required

    Bio-functional textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological therapies

    Get PDF
    In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the dierent dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted

    Familial hematuria

    Get PDF
    Hematuria is a common presenting complaint in pediatric nephrology clinics and often has a familial basis. This teaching article provides an overview of causes, diagnosis, and management of the major forms of familial hematuria, Alport syndrome, and thin basement membrane nephropathy

    Women and Alport syndrome

    Get PDF
    X-linked Alport syndrome (XLAS) is caused by mutations in type IV collagen causing sensorineural hearing loss, eye abnormalities, and progressive kidney dysfunction that results in near universal end-stage renal disease (ESRD) and the need for kidney transplantation in affected males. Until recent decades, the disease burden in heterozygous “carrier” females was largely minimized or ignored. Heterozygous females have widely variable disease outcomes, with some affected females exhibiting normal urinalysis and kidney function, while others develop ESRD and deafness. While the determinants of disease severity in females with XLAS are uncertain, skewing of X-chromosome inactivation has recently been found to play a role. This review will explore the natural history of heterozygous XLAS females, the determinants of disease severity, and the utility of using XLAS females as kidney donors

    COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome.

    Get PDF
    COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. BACKGROUND: Mutations of the type IV collagen COL4A5 gene cause X-linked Alport syndrome (ATS). Mutations of COL4A3 and COL4A4 have been reported both in autosomal-recessive and autosomal-dominant ATS, as well as in benign familial hematuria (BFH). In the latter conditions, however, clinical features are less defined, few mutations have been reported, and other genes and non-genetic factors may be involved. METHODS: We analyzed 36 ATS patients for COL4A3 and COL4A4 mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Sporadic patients who had tested negative for COL4A5 mutations were included with typical cases of autosomal recessive ATS to secure a better definition of the phenotype spectrum. RESULTS: We identified seven previously undescribed COL4A3 mutations: in two genetic compounds and three heterozygotes, and one in COL4A4. In agreement with the literature, some of the mutations of compound heterozygotes were associated with microhematuria in healthy heterozygous relatives. The mutations of heterozygous patients are likely dominant, since no change was identified in the second allele even by sequencing, and they are predicted to result in shortened or abnormal chains with a possible dominant-negative effect. In addition, both genes showed rare variants of unclear pathogenicity, and common polymorphisms that are shared in part with other populations. CONCLUSIONS: This study extends the mutation spectrum of COL4A3 and COL4A4 genes, and suggests a possible relationship between production of abnormal COL IV chains and dominant expression of a continuous spectrum of phenotypes, from ATS to BFH

    Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria

    Get PDF
    The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3–5). It identified ‘mutational hotspots’ (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that ‘well-established’ functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common ‘incidental’ findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3–COL4A5 genes remains a challenge
    corecore