3,041 research outputs found
Elastic alpha-scattering of 112Sn and 124Sn at astrophysically relevant energies
The cross sections for the elastic scattering reactions
{112,124}Sn(a,a){112,124}Sn at energies above and below the Coulomb barrier are
presented and compared to predictions for global alpha-nucleus potentials. The
high precision of the new data allows a study of the global alpha-nucleus
potentials at both the proton and neutron-rich sides of an isotopic chain. In
addition, local alpha-nucleus potentials have been extracted for both nuclei,
and used to reproduce elastic scattering data at higher energies. Predictions
from the capture cross section of the reaction 112Sn(a,g)116Te at
astrophysically relevant energies are presented and compared to experimental
data.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.
Thermal effects on atomic friction
We model friction acting on the tip of an atomic force microscope as it is
dragged across a surface at non-zero temperatures. We find that stick-slip
motion occurs and that the average frictional force follows ,
where is the tip velocity. This compares well to recent experimental work
(Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all
microscopic parameters. We calculate the scaled form of the average frictional
force's dependence on both temperature and tip speed as well as the form of the
friction-force distribution function.Comment: Accepted for publication, Physical Review Letter
Composição da produção de grãos na haste principal da canola.
Orientador: Genei Antonio Dalmago
Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor
Miniaturization of force probes into nanomechanical oscillators enables
ultrasensitive investigations of forces on dimensions smaller than their
characteristic length scale. Meanwhile it also unravels the force field
vectorial character and how its topology impacts the measurement. Here we
expose an ultrasensitive method to image 2D vectorial force fields by
optomechanically following the bidimensional Brownian motion of a singly
clamped nanowire. This novel approach relies on angular and spectral tomography
of its quasi frequency-degenerated transverse mechanical polarizations:
immersing the nanoresonator in a vectorial force field does not only shift its
eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This
universal method is employed to map a tunable electrostatic force field whose
spatial gradients can even take precedence over the intrinsic nanowire
properties. Enabling vectorial force fields imaging with demonstrated
sensitivities of attonewton variations over the nanoprobe Brownian trajectory
will have strong impact on scientific exploration at the nanoscale
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Velocity tuning of friction with two trapped atoms
Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime
A Tale of Two Transients: GW 170104 and GRB 170105A
We present multi-wavelength follow-up campaigns by the AstroSat CZTI and GROWTH collaborations in search of an electromagnetic counterpart to the gravitational wave event GW 170104. At the time of the GW 170104 trigger, the AstroSat CZTI field of view covered 50.3% of the sky localization. We do not detect any hard X-ray (>100 keV) signal at this time, and place an upper limit of , for a 1 s timescale. Separately, the ATLAS survey reported a rapidly fading optical source dubbed ATLAS17aeu in the error circle of GW 170104. Our panchromatic investigation of ATLAS17aeu shows that it is the afterglow of an unrelated long, soft GRB 170105A, with only a fortuitous spatial coincidence with GW 170104. We then discuss the properties of this transient in the context of standard long GRB afterglow models
- …
