1,779 research outputs found
Curves on K3 surfaces and modular forms
We study the virtual geometry of the moduli spaces of curves and sheaves on
K3 surfaces in primitive classes. Equivalences relating the reduced
Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable
pairs moduli spaces are proven. As a consequence, we prove the Katz-Klemm-Vafa
conjecture evaluating integrals (in all genera) in terms of
explicit modular forms. Indeed, all K3 invariants in primitive classes are
shown to be governed by modular forms.
The method of proof is by degeneration to elliptically fibered rational
surfaces. New formulas relating reduced virtual classes on K3 surfaces to
standard virtual classes after degeneration are needed for both maps and
sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds.
Our approach uses a result of Kiem and Li to produce reduced classes. In
Appendix A, we answer a number of questions about the relationship between the
Kiem-Li approach, traditional virtual cycles, and symmetric obstruction
theories.
The interplay between the boundary geometry of the moduli spaces of curves,
K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.Comment: An incorrect example in Appendix A, pointed out to us by Dominic
Joyce, has been replaced by a reference to a new paper arXiv:1204.3958
containing a corrected exampl
Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
Most of Calabi-Yau manifolds that have been considered by physicists are
complete intersection Calabi-Yau manifolds of toric varieties or some quotients
of product types. Purpose of this paper is to introduce a different and rather
new kind of construction method of Calabi-Yau manifolds by pasting two
non-compact Calabi-Yau manifolds. We will also in some details explain a
curious and mysterious similarity with construction of some -manifolds
(also called Joyce manifolds), which are base spaces for M-theory.Comment: 10 pages. Accepted for publication in JHE
Gopakumar-Vafa invariants via vanishing cycles
In this paper, we propose an ansatz for defining Gopakumar-Vafa invariants of
Calabi-Yau threefolds, using perverse sheaves of vanishing cycles. Our proposal
is a modification of a recent approach of Kiem-Li, which is itself based on
earlier ideas of Hosono-Saito-Takahashi. We conjecture that these invariants
are equivalent to other curve-counting theories such as Gromov-Witten theory
and Pandharipande-Thomas theory. Our main theorem is that, for local surfaces,
our invariants agree with PT invariants for irreducible one-cycles. We also
give a counter-example to the Kiem-Li conjectures, where our invariants match
the predicted answer. Finally, we give examples where our invariant matches the
expected answer in cases where the cycle is non-reduced, non-planar, or
non-primitive.Comment: 63 pages, many improvements of the exposition following referee
comments, final version to appear in Inventione
- …
